AI Article Synopsis

  • IPF development involves a two-hit process: an initial vulnerability of the lung's epithelial cells followed by a second injury that triggers fibrotic changes.
  • Genetic factors play a crucial role in the first hit, while ongoing damage disrupts normal cell function and activates fibroblasts, leading to lung fibrosis.
  • Understanding IPF in terms of its stages may lead to new treatments that target these underlying causes, aiming for a shift from palliative care to potential cures for patients.

Article Abstract

Idiopathic pulmonary fibrosis (IPF) is etiologically complex, with well-documented genetic and nongenetic origins. In this Review, we speculate that the development of IPF requires two hits: the first establishes a vulnerable bronchoalveolar epithelium, and the second triggers mechanisms that reprogram distal epithelia to initiate and perpetuate a profibrotic phenotype. While vulnerability of the bronchoalveolar epithelia is most often driven by common or rare genetic variants, subsequent injury of the bronchoalveolar epithelia results in persistent changes in cell biology that disrupt tissue homeostasis and activate fibroblasts. The dynamic biology of IPF can best be contextualized etiologically and temporally, including stages of vulnerability, early disease, and persistent and progressive lung fibrosis. These dimensions of IPF highlight critical mechanisms that adversely disrupt epithelial function, activate fibroblasts, and lead to lung remodeling. Together with better recognition of early disease, this conceptual approach should lead to the development of novel therapeutics directed at the etiologic and temporal drivers of lung fibrosis that will ultimately transform the care of patients with IPF from palliative to curative.

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI183836DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684817PMC

Publication Analysis

Top Keywords

lung fibrosis
12
progressive lung
8
vulnerable bronchoalveolar
8
bronchoalveolar epithelium
8
bronchoalveolar epithelia
8
activate fibroblasts
8
early disease
8
ipf
5
fibrosis
4
fibrosis reprogramming
4

Similar Publications

Interstitial lung disease (ILD) is known to be a major complication of systemic sclerosis (SSc) and a leading cause of death in SSc patients. As the most common type of ILD, the pathogenesis of idiopathic pulmonary fibrosis (IPF) has not been fully elucidated. In this study, weighted correlation network analysis (WGCNA), protein‒protein interaction, Kaplan-Meier curve, univariate Cox analysis and machine learning methods were used on datasets from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

Background: Adult people with cystic fibrosis (PwCF) have a higher risk of end-stage kidney disease than the general population. The nature and mechanism of kidney disease in CF are unknown. This study quantifies urinary kidney injury markers and examines the hypothesis that neutrophil activation and lung infection are associated with early kidney injury in CF.

View Article and Find Full Text PDF

We have previously reported that high-alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) in the gut can cause endo-alcoholic fatty liver disease. Here, we discover that 91.2% of Kpn isolates from pulmonary disease samples also produce excess ethanol, which may be associated with respiratory disease severity.

View Article and Find Full Text PDF

The electrochemical biosensor has brought a paradigm shift in the field of sensing due to its fast response and easy operability. The performance of electrochemical sensors can be modified by coupling them with various metal oxides, nanomaterials, and nanocomposites. Hydrogen peroxide is a short-lived reactive oxygen species that plays a crucial role in various physiological and biological processes.

View Article and Find Full Text PDF

Background: Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial pneumonia with restrictive ventilation. Recently, the structural and functional defects of small airways have received attention in the early pathogenesis of IPF. This study aimed to elucidate the characteristics of small airway epithelial dysfunction in patients with IPF and explore novel therapeutic interventions to impede IPF progression by targeting the dysfunctional small airways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!