A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stretchable and adhesive bilayers for electrical interfacing. | LitMetric

Stretchable and adhesive bilayers for electrical interfacing.

Mater Horiz

State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Published: January 2025

AI Article Synopsis

  • Integrated stretchable devices face issues with electrical performance due to debonding at connections between soft and rigid modules under stress.
  • A new conductive and adhesive bilayer interface connects these modules effectively, using a combination of a SEBS elastomer layer and a SEBS-liquid metal composite layer.
  • This innovative interface allows for impressive strain capabilities and maintains high electrical conductivity (3.7 × 10 S m) even when stretched, paving the way for practical applications in wearable and implantable bioelectronics.

Article Abstract

Integrated stretchable devices, containing soft modules, rigid modules, and encapsulation modules, are of potential use in implantable bioelectronics and wearable devices. However, such systems often suffer from electrical deterioration due to debonding failure at the connection between rigid and soft modules induced by severe stress concentration, limiting their practical implementation. Here, we report a highly conductive and adhesive bilayer interface that can reliably connect soft-soft modules and soft-rigid modules together by simply pressing without conductive pastes. This interface configuration features a nanoscale styrene-ethylene-butylene-styrene (SEBS) elastomer layer and a SEBS-liquid metal (LM) composite layer. The top SEBS layer enables a strong adhesion with different modules. The connections between soft-soft and soft-rigid modules can be stretched to high strains of 400% and 250%, respectively. Coupling electron tunneling through an ultrathin SEBS layer with LM particle networks in a SEBS-LM composite layer renders continuous pathways for electrical conductivity. Such a bilayer interface exhibits a strain-insensitive high conductivity (3.7 × 10 S m) over a wide strain range from 0 to 680%, which can be facilely fabricated in a self-organized manner by sedimentation of LM particles. We present a proof-of-concept demonstration of this bilayer interface as an electrode, interconnect, and self-solder for monitoring physiological signals.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4mh01166jDOI Listing

Publication Analysis

Top Keywords

bilayer interface
12
modules
8
soft modules
8
soft-rigid modules
8
composite layer
8
sebs layer
8
layer
5
stretchable adhesive
4
adhesive bilayers
4
bilayers electrical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!