Postinterventional restenosis is a major challenge in the treatment of peripheral vascular disease. Current anti-restenosis drugs inhibit neointima hyperplasia but simultaneously impair endothelial repair due to indiscrminative cytotoxity. Stem cell-derived exosomes provide multifaceted therapeutic effects by delivering functional miRNAs to endothelial cells, macrophages, and vascular smooth muscle cells (VSMCs). However, their clinical application is severly limited by poor targeting and low tissue uptake in injured vessel. To address this challenge, we constructed platelet-mimetic exosomes (PM-EXOs) by fusing mesenchymal stem cell (MSC)-derived exosomes with platelet membrane in order to harness the natural ability of platelets to target vascular injury, evade clearance by the mononuclear phagocyte system, and penetrate into the intima by hitchhiking on inflammatory monocytes. PM-EXOs demonstrated enhanced cellular uptake by endothelial cells and macrophages, exerting proangiogenic and immunomodulatory effects via the delivery of functional miRNAs . The intravenously administrated PM-EXOs exhibited extended circulation time and a 4-fold enhancement in targeting injured arteries compared to unmodified exosomes. In mouse and rat carotid artery injury models, PM-EXOs were shown to promote endothelial repair on the denuded arterial wall, lower the M1/M2 ratio of infiltrated macrophages, and eventually inhibit phenotypic switch of vascular smooth muscle cells and reduce the formation of neointima without causing systemic toxicity. This biomimetic strategy may be leveraged to boost the therapeutic index of exosomes and realize the multifaceted treatment of arterial restenosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671393 | PMC |
http://dx.doi.org/10.7150/thno.103747 | DOI Listing |
Fundam Clin Pharmacol
February 2025
Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil.
Background: Chalcones have been described in the literature as promising antineoplastic compounds.
Objectives: Therefore, the objective of this study was to analyze the cytotoxic effect of 23 synthetic chalcones on human acute leukemia (AL) cell lines (Jurkat and K562).
Methods: Cytotoxicity assessment was performed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method.
Bone Res
January 2025
The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
Osteoarthritis (OA) is a degenerative joint disease accompanied with the loss of cartilage and consequent nociceptive symptoms. Normal articular cartilage maintains at aneural state. Neuron guidance factor Semaphorin 3A (Sema3A) is a membrane-associated secreted protein with chemorepulsive properties for axons.
View Article and Find Full Text PDFPLoS One
January 2025
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Chin.
Introduction: Different Guided Tissue Regeneration (GTR) procedures, such as membranes, bone substitute materials, and Autologous Platelet Concentrates (APCs), have been applied after surgical root canal treatment (SRCT), which produce different outcomes. This study aimed to evaluate the impact of regenerative procedures on the healing process following SRCT.
Methods: A comprehensive search of PubMed, Embase, Scopus, Cochrane, and the Web of Science found Randomized Controlled Trials (RCTs) published until February 25, 2024.
Langmuir
January 2025
Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Shosha, Himeji, Hyogo 671-2201, Japan.
To prepare amphiphilic diblock copolymers (MP), a controlled radical polymerization approach was employed, incorporating hydrophilic poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) with hydrophobic poly(3-methoxypropyl acrylate) (PMPA). The synthesized diblock copolymers feature a PMPC block with a degree of polymerization (DP) of 100 and a PMPA block with DP (=) values of 171 and 552. The hydrophilic PMPC block exhibits biocompatibility, such as inhibition of platelet and protein adsorption, because of its hydrophilic pendant zwitterionic phosphorylcholine groups that have the same chemical structure as cell membrane surfaces.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!