AI Article Synopsis

  • Recent autopsy studies show that interface astroglial scarring (IAS) can occur at the gray-white matter junction in military personnel who experience repeated blast brain injuries.
  • There is currently no neuroimaging test available to detect IAS, making it difficult to diagnose and treat these injuries.
  • In a study of 27 U.S. Special Operations Forces personnel, five individuals (18.5%) showed elevated neuroinflammation signals at the gray-white matter interface compared to healthy controls, suggesting that TSPO PET scans may help identify repeated blast brain injury.

Article Abstract

Emerging evidence from autopsy studies indicates that interface astroglial scarring (IAS) at the gray-white matter junction is a pathological signature of repeated blast brain injury in military personnel. However, there is currently no neuroimaging test that detects IAS, which is a major barrier to diagnosis, prevention, and treatment. In 27 active-duty U.S. Special Operations Forces personnel with high levels of cumulative blast exposure, we performed translocator protein (TSPO) positron emission tomography (PET) using [C]PBR28 to detect neuroinflammation at the cortical gray-white matter interface, a neuroanatomic location where IAS has been reported in autopsy studies. TSPO signal in individual Operators was compared with the mean TSPO signal in a control group of nine healthy civilian volunteers. We identified five Operators (18.5%) with TSPO signal at the cortical gray-white matter interface that was more than 2 standard deviations above the control mean. Cumulative blast exposure, as measured by the generalized blast exposure value, did not differ between the five Operators with elevated TSPO signal and the 22 Operators without elevated TSPO signal. While the pathophysiologic link between neuroinflammation and IAS remains uncertain, these preliminary observations provide the basis for further investigation into TSPO PET as a potential biomarker of repeated blast brain injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685501PMC
http://dx.doi.org/10.1089/neur.2024.0116DOI Listing

Publication Analysis

Top Keywords

tspo signal
20
gray-white matter
16
matter interface
12
blast exposure
12
active-duty special
8
special operations
8
operations forces
8
autopsy studies
8
repeated blast
8
blast brain
8

Similar Publications

Article Synopsis
  • Recent autopsy studies show that interface astroglial scarring (IAS) can occur at the gray-white matter junction in military personnel who experience repeated blast brain injuries.
  • There is currently no neuroimaging test available to detect IAS, making it difficult to diagnose and treat these injuries.
  • In a study of 27 U.S. Special Operations Forces personnel, five individuals (18.5%) showed elevated neuroinflammation signals at the gray-white matter interface compared to healthy controls, suggesting that TSPO PET scans may help identify repeated blast brain injury.
View Article and Find Full Text PDF

The translocator protein 18 kDa (TSPO) is a multifunctional outer mitochondrial membrane protein associated with various aspects of mitochondrial physiology and multiple roles in health and disease. Here, we aimed to analyse the role of TSPO in the regulation of mitochondrial and cellular functions in a human neuronal cell model. We used the CRISPR/Cas9 technology and generated TSPO knockout (KO) and control (CTRL) variants of human-induced pluripotent stem cells (hiPSCs).

View Article and Find Full Text PDF

Mitochondrial dysfunction of Astrocyte induces cell activation under high salt condition.

Heliyon

December 2024

Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.

Excess dietary sodium can accumulate in brain and adversely affect human health. We have confirmed in previous studies that high salt can induce activation of astrocyte manifested by the secretion of various inflammatory factors. In order to further explore the effect of high salt on the internal cell metabolism of astrocytes, RNA sequencing was performed on astrocytes under high salt environment, which indicated the oxidative phosphorylation and glycolysis pathways of astrocytes were downregulated.

View Article and Find Full Text PDF

Although both central and peripheral inflammation have been observed consistently in depression, the relationship between the two remains obscure. Extra-axial immune cells may play a role in mediating the connection between central and peripheral immunity. This study investigates the potential roles of calvarial bone marrow and parameningeal spaces in mediating interactions between central and peripheral immunity in depression.

View Article and Find Full Text PDF
Article Synopsis
  • * In studies using a mouse model lacking the NPC1 protein in immune cells, researchers found significant changes in microglial lipid profiles, increased microglial activity, and symptoms resembling NPC disease, such as lifespan reduction and motor issues.
  • * Monitoring translocator protein (TSPO) levels in the blood may be useful for assessing NPC disease progression and treatment response, as shown by changes in TSPO levels following a specific therapy that appeared beneficial for patients.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!