In common bean ( L.), leaf photosynthesis is significantly reduced under drought conditions. Previous studies have shown that some drought-tolerant cultivars use the pod walls to compensate the decreased photosynthesis rate in leaves by acting as temporary reservoirs of carbohydrates to support seed filling. Here, we describe a comprehensive molecular characterization of sucrose synthase (SUS, EC 2.4.1.13) gene family through a genome-wide analysis and evaluated the effects of terminal drought on reproductive structures, specifically the pod walls. Seven genes were located on six different chromosomes and had 8-16 intron-exon structures (8-16 exons). The PvSUS protein sequences revealed conserved catalytic domains, with molecular weights ranging from 90.5 kDa to 105.1 kDa and lengths from 799 to 929 amino acids. Phylogenetic analysis grouped these sequences into three main clusters with seven subgroups, indicating divergence from SUS sequences in other plant species. Using a docking sequence, we predicted three-dimensional (3-D) structures and evaluated the active sites. Bioinformatics analysis of promoter regions suggested that genes may respond to light, hormone signaling, and stress stimuli. Greenhouse experiments were conducted using the cv. OTI, identified as having intermediate drought tolerance. Plants at the R8 growth stage were maintained with regular irrigation at 100% field capacity (FC) or with water restriction to maintain 50% of field capacity. Pods were harvested 5 days, 10 days, 15 days, and 20 days after anthesis. An increase in PvSUS activity under water restriction was associated with higher levels of fructose, while sucrose concentration also increased. qRT-PCR analysis revealed that , , and were strongly expressed during seed development under water restriction. The fluorescent sucrose analog esculin indicated that transport across the plasma membrane might contribute to the increase in the pith cell diameter of pedicels. The results provide a systematic overview of the gene family in , offering a framework for further research and the potential functional application of genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688632 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1462844 | DOI Listing |
World J Surg Oncol
January 2025
Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tiantan Hospital, Capital Medical University, No. 119, South Fourth Ring Road West, Fengtai District, Beijing, 100070, China.
Background: This study aims to identify a pathogenic SDHD mutation associated with hereditary head and neck paraganglioma (HNPGL) in a Chinese family and to explore its implications for genetic counseling.
Methods: The study involved a family with 15 members spanning three generations. A 31-year-old patient (II-4) was diagnosed with a left parotid gland tumor and a right carotid body tumor, while both the father and elder sister had right carotid body tumors, and the third sister had bilateral carotid body tumors.
BMC Plant Biol
January 2025
Maize and Millet Research Institute, Yousafwala, Sahiwal, Pakistan.
Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan Province, 650224, China.
Background: WRKY transcription factors (TFs) regulate plant responses to environmental stimuli and development, including flowering. Despite extensive research on different species, their role in the invasive plant Mikania micrantha remains to be explored. The aim of this study was to identify and analyze WRKY genes in M.
View Article and Find Full Text PDFNat Plants
January 2025
Boyce Thompson Institute, Ithaca, NY, USA.
Hornworts, one of the three bryophyte phyla, show some of the deepest divergences in extant land plants, with some families separated by more than 300 million years. Previous hornwort genomes represented only one genus, limiting the ability to infer evolution within hornworts and their early land plant ancestors. Here we report ten new chromosome-scale genomes representing all hornwort families and most of the genera.
View Article and Find Full Text PDFEMBO J
January 2025
College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China.
Chloride (Cl) ions cause major damage to crops in saline soils. Understanding the key factors that influence Cl uptake and translocation will aid the breeding of more salt-tolerant crops. Here, using genome-wide association study and transcriptomic analysis, we identified a NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER family (NPF) protein, GmNPF7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!