The increasing prevalence of cancer and bacterial resistance necessitates more effective anti-cancer and anti-bacterial treatments. This study explores the potential of medicinal plants, specifically () and (), in addressing this need, aiming to uncover new therapeutic interventions. Various extraction methods for the leaves of and were employed to investigate the anti-bacterial and anti-cancer properties of these herbs. For anti-bacterial testing, extracts were prepared using water, chloroform, and ethyl acetate, and their activity against methicillin-resistant () (MRSA) and () was assessed. The anti-cancer potential was evaluated through MTT cytotoxicity assays on various cancer cell lines and further testing using high-content imaging (HCI)-Apoptosis Assay and the ApoTox-GloTM Triplex Assay. Liquid chromatography-mass spectrometry (LC-MS) was used to identify the secondary metabolites of , and computational predictions were performed to assess the activity of these metabolites. The leaf extracts of both and demonstrated antibacterial activity against and . The ethyl acetate extract exhibited potent anti-cancer effects on several cancer cell lines. The research also revealed a dose-dependent induction of apoptosis and a decline in cell viability. Computational predictions suggested the identified metabolites were active as nuclear receptor ligands and enzyme inhibitors, with good oral bioavailability. Most metabolites were found to be immunologic and cytotoxic, except for proceragenin and calotropone, which were determined to be non-cardiotoxic. The study's findings demonstrate the remarkable cytotoxic and antibacterial effects of extracts prepared using ethyl acetate. These results pave the way for further studies to explore the full potential of these extracts and highlight the presence of chemically active metabolites in , which hold promise as lead molecules for the development of novel therapies targeting bacterial infections and cancer while minimizing potential side effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660137 | PMC |
http://dx.doi.org/10.7150/jca.96848 | DOI Listing |
Environ Monit Assess
January 2025
Institut de Recherche Robert-Sauvé en Santé Et en Sécurité du Travail (IRSST), Montréal, Québec, Canada.
In recyclable waste management facilities, several contaminants, mainly bioaerosols and microorganisms, can be released and cause potential adverse health effects. Given that microbial volatile organic compounds (mVOCs) are metabolites developed by molds and since they can be considered as potential biomarkers of mold exposure, their concentrations in ambient air were monitored at a recyclable waste sorting plant (WSP) and a university campus (UC) serving as control environment for comparison. A recently developed analytical method was used for the detection of 21 selected mVOCs in real conditions.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute , National Research Centre, Dokki, Cairo, 12622, Egypt.
Cisplatin is a chemotherapeutic drug, which exhibits undesirable side effects. Chitosan nanoparticles are promising for drug delivery. The aim of this study was to determine the effect of the brown alga Turbinaria triquetra ethyl acetate fraction and polysaccharides, either loaded on chitosan nanoparticles or free, against podocyturia and cisplatin nephrotoxicity in rats.
View Article and Find Full Text PDFSci Rep
January 2025
Dental Health Department, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia.
In this study, the endophytic fungus Coniothyrium chaingmaiense-KUMBMDBT-25 was isolated from the healthy stem of Euphorbia tirucalli, mass cultivated by submerged fermentation, and extracted using ethyl acetate as a solvent. The extract was subjected to GC-MS analysis. The synthesized Con-AgNPs were characterized through various bioanalytical methods.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), Changa - 388421, Anand, Gujarat, India.
Background: Tavaborole (TAV), a benzoxaborole derivative, is an FDA-approved antifungal agent for treating onychomycosis, a common and persistent fungal infection of the toenails.
Objective: This study aimed to develop a robust stability-indicating HPTLC method to determine TAV in nanostructured lipid carriers (NLC) using a comprehensive approach that includes risk assessment, and Analytical Quality by Design.
Methods: The critical method parameters influencing the HPTLC results were screened using a Placket-Burman screening design followed by its optimization using a central composite optimization design.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!