A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Whole genome analysis, detoxification of ochratoxin a and physiological characterization of a novel MM35 isolated from soil. | LitMetric

AI Article Synopsis

  • Ochratoxin A (OTA) is a major global contaminant that affects food safety, and this study focuses on isolating probiotics capable of degrading OTA.
  • MM35, a newly identified strain, achieved an impressive 87.10% degradation of OTA within 48 hours and produced enzymes that contribute to this process.
  • The strain exhibits significant antibacterial properties and tolerance to harsh environments, making it a promising candidate for managing OTA contamination in food and feed industries.

Article Abstract

Ochratoxin A (OTA) is a significant global contaminant that poses severe challenges to food safety and public health. This study aims to isolate the OTA-degrated probiotics and evaluate genetic and biological characteristic. Here, The degradation rate of a new strain named MM35 isolated from soil was the highest (87.10% within 48 h), and its culture supernatant was the main component of OTA degradation (63.95%) by high performance liquid chromatography. Further investigation revealed that the extracellular enzyme that degrades OTA in the culture supernatant of MM35 may be a small molecule enzyme with certain heat resistance. Genome-wide analysis showed that MM35 contains a cluster of carboxypeptidases encoding OTA-degrading potential, and had good metabolic and catalytic synthesis ability, and strong application potential in the synthesis and degradation of carbohydrates and proteins. A variety of secondary metabolites with antibacterial properties, such as non-ribosomal peptide synthetase and terpenoids, were identified in its metabolites. Consistent with the predicted results, MM35 showed various enzyme production characteristics such as cellulase and xylanase. Furthermore, MM35 could inhibit the growth of a variety of pathogenic bacteria, and showed high co-aggregation ability to and . In addition, MM35 has certain tolerance to harsh environments such as strong acid, bile salt, and high temperature. Additionally, the adhesion rate of MM35 was 5.4%, and the invasion rate was 2.1% in IPEC-J2 cells. In summary, the data suggest MM35 isolated strain has high OTA degradation efficiency, antibacterial activity and intestinal colonization, which provided a new way for the treatment of OTA contamination in food and feed industries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688396PMC
http://dx.doi.org/10.3389/fmicb.2024.1497860DOI Listing

Publication Analysis

Top Keywords

mm35 isolated
12
mm35
9
isolated soil
8
culture supernatant
8
ota degradation
8
ota
5
genome analysis
4
analysis detoxification
4
detoxification ochratoxin
4
ochratoxin physiological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!