DNA methylation in wheat: current understanding and future potential for enhancing biotic and abiotic stress tolerance.

Physiol Mol Biol Plants

Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India.

Published: December 2024

AI Article Synopsis

  • DNA methylation is a crucial epigenetic mark that influences gene expression in plants, playing a significant role in their development and response to environmental challenges.
  • The study utilizes bibliometric science mapping to analyze current research trends regarding DNA methylation in wheat, aiming to understand its mechanisms and effects on gene regulation throughout the plant's genome.
  • The findings highlight the importance of DNA methylation in wheat’s growth stages and its response to stress, suggesting its potential to enhance breeding programs for creating more resilient wheat varieties.

Article Abstract

Unlabelled: DNA methylation is a paramount epigenetic mark that helps balance gene expression post-transcriptionally. Its effect on specific genes determines the plant's holistic development and acclimatization during adversities. L., an allohexaploid, is a dominant cereal crop with a large genome size. Changing environmental conditions exert a profound impact on its overall yield. Here, bibliometric science mapping was employed for a nuanced understanding of the prevailing research trends in the DNA methylation study of wheat. The detailed data obtained was used to delve deep into its fundamentals, patterns and mechanism of action, to accumulate evidence of the role of DNA methylation in the regulation of gene expressions across its entire genome. This review encapsulates the methylation/demethylation players in wheat during different stages of development. It also uncloaks the differential methylation dynamics while encountering biotic and abiotic constraints, focusing on the critical function it plays in fostering immunity. The study significantly contributes to broadening our knowledge of the regulatory mechanism and plasticity of DNA methylation in wheat. It also uncovers its potential role in improving breeding programs to produce more resilient wheat varieties, stimulating further research and development in the field.

Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01539-1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685376PMC
http://dx.doi.org/10.1007/s12298-024-01539-1DOI Listing

Publication Analysis

Top Keywords

dna methylation
20
methylation wheat
8
biotic abiotic
8
dna
5
wheat
5
methylation
5
wheat current
4
current understanding
4
understanding future
4
future potential
4

Similar Publications

Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.

View Article and Find Full Text PDF

Childhood maltreatment exposure (CME) increases the risk of adverse long-term health consequences for the exposed individual. Animal studies suggest that CME may also influence the health and behaviour in the next generation offspring through CME-driven epigenetic changes in the germ line. Here we investigated the associated between early life stress on the epigenome of sperm in humans with history of CME.

View Article and Find Full Text PDF

Multiomic characterization, immunological and prognostic potential of SMAD3 in pan-cancer and validation in LIHC.

Sci Rep

January 2025

Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.

SMAD3, a protein-coding gene, assumes a pivotal role within the transforming growth factor-beta (TGF-β) signaling pathway. Notably, aberrant SMAD3 expression has been linked to various malignancies. Nevertheless, an extensive examination of the comprehensive pan-cancer impact on SMAD3's diagnostic, prognostic, and immunological predictive utility has yet to be undertaken.

View Article and Find Full Text PDF

We have developed the regionalpcs method, an approach for summarizing gene-level methylation. regionalpcs addresses the challenge of deciphering complex epigenetic mechanisms in diseases like Alzheimer's disease. In contrast to averaging, regionalpcs uses principal components analysis to capture complex methylation patterns across gene regions.

View Article and Find Full Text PDF

Epigenetics in autosomal dominant polycystic kidney disease.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA. Electronic address:

Autosomal dominant polycystic kidney disease (ADPKD) is the fourth leading cause of end-stage renal disease, contributing substantially to patient morbidity, mortality, and healthcare system strain. Emerging research highlights a pivotal role of epigenetics in ADPKD's pathophysiology, where mechanisms like DNA methylation, histone modifications, and non-coding RNA regulation significantly impact disease onset and progression. These epigenetic factors influence gene expression and regulate key processes involved in cyst formation and expansion, fibrosis, and inflammatory infiltration, thus accelerating ADPKD progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!