Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aerosol contamination presents significant challenges across various industries, ranging from healthcare to manufacturing. Over the past few years, open foam filters have gained prominence for their ability to efficiently capture particles while allowing reasonable airflow. In this work, we present the use of 3D-printed idealized open foam-like lattice structures as aerosol filtration media, leveraging advances in additive manufacturing to generate these highly tunable and modular filters. Using parametric design approaches, we fabricated lattice filters with four different unit cell geometries (Cubic, Kelvin, Octahedron, and Weaire-Phelan) via Digital Light Synthesis 3D printing and characterized these structures with X-ray microcomputed tomography. We compared the aerosol filtration performance of the different lattice unit cell geometries using 1 μm polystyrene latex (PSL) aerosol particles, finding the filtration performance to be positively correlated with the single-unit-cell specific surface area. We then expanded our evaluation of deposition efficiency in Kelvin cell lattice structures of varied porosities, again finding a correlation between the specific surface area and deposition performance. Experimental analysis confirmed that deposition primarily occurs through impaction and electrostatic mechanisms within the parameter space. Overall, our findings demonstrate that unit-cell-based lattices can achieve a wide range of aerosol filtration efficiencies (∼10-100%) across various operating conditions (1-4 m/s superficial velocity), offering a highly tunable in-line filtration medium capable of maintaining high efficiency even at elevated airflow rates. This work not only provides essential guidelines for designing and manufacturing 3D-printed lattices as customizable aerosol filters but also highlights the current limitations and challenges in producing these structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686461 | PMC |
http://dx.doi.org/10.1021/acsaenm.4c00562 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!