The lengthy period of external fixation for bone consolidation increases the risk of complications during distraction osteogenesis (DO). Both pro-angiogenic and osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) contribute to bone regeneration during DO. The underlying mechanism of Schwann cells (SCs) in promoting bone regeneration during DO remains poorly understood. The impacts of RSC-96 on the proliferation, migration, and osteogenic differentiation of BMSCs in the coculture system were investigated. The pro-angiogenic potential of BMSCs was evaluated by migration and tube formation assay. Quantitative real-time PCR was used to analyze angiogenic and osteogenic markers. ELISA was used to detect the secretion of various neurotrophins. Protein expressions of Activate protein kinase B (AKT)/β-catenin signaling were assessed by western blot. , dynamic expression levels of neurotrophic factors were detected in a preclinical rat DO model. Promotive effects of vascularization and mineralization provided by RSC-96 derived conditioned medium (CM) in a rat DO model were verified radiologically, biomechanically and histologically. Coculture system with RSC-96 promoted osteogenic ability of BMSCs, with increased cell viability, alkaline phosphatase staining, mineralized nodule formation, and osteogenic gene expression. Additionally, increased angiogenic gene expression of BMSCs and angiogenic capacity of endothelial cells demonstrated enhanced pro-angiogenic potential of BMSCs. Secretion of angiogenic and neurotrophic factors were enhanced in the coculture system. These effects were accompanied by activation of AKT/GSK-3β/β-catenin signaling, as evidenced by western blot analysis and the inhibitory effect of AKT inhibitor. The mRNA expression of neurotrophic factors peaked at the end of the distraction phase during DO. Furthermore, RSC-96 derived CM accelerated bone regeneration, resulting in improved biomechanical parameters, radiological features and histological manifestations, along with increased vascularization in the distraction area. Through activation of AKT/GSK-3β/β-catenin signaling, SCs enhanced the coupled angio- and osteogenesis effects of BMSCs. The preclinical evidence demonstrates that SCs derived CM with increased neurotrophins secretion can be a promising treatment approach to accelerate bone regeneration in the DO process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659829 | PMC |
http://dx.doi.org/10.7150/ijms.100854 | DOI Listing |
Tissue Eng Part B Rev
January 2025
Materials Science and Engineering, School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China.
Synthetic bone transplantation has emerged in recent years as a highly promising strategy to address the major clinical challenge of bone tissue defects. In this field, bioactive glasses (BGs) have been widely recognized as a viable alternative to traditional bone substitutes due to their unique advantages, including favorable biocompatibility, pronounced bioactivity, excellent biodegradability, and superior osseointegration properties. This article begins with a comprehensive overview of the development and success of BGs in bone tissue engineering, and then focuses on their composite reinforcement systems with biodegradable metals, calcium-phosphorus (Ca-P)-based bioceramics, and biodegradable medical polymers, respectively.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
Aptamers represent a distinct category of short nucleotide sequences or peptide molecules characterized by their ability to bind to specific targets with high precision. These molecules are predominantly synthesized through SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technology. Recent findings indicate that aptamers may have significant applications in regenerative medicine, particularly in the domain of tissue repair.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium.
Transplantation of bone implants is currently recognized as one of the most effective means of treating bone defects. Biobased and biodegradable polyester composites combine the good mechanical and degradable properties of polyester, thereby providing an alternative for bone implant materials. Bone tissue engineering (BTE) accelerates bone defect repair by simulating the bone microenvironment.
View Article and Find Full Text PDFBioact Mater
April 2025
School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China.
After tooth extraction, alveolar bone absorbs unevenly, leading to soft tissue collapse, which hinders full regeneration. Bone loss makes it harder to do dental implants and repairs. Inspired by the biological architecture of bone, a deformable SIS/HA (Small intestinal submucosa/Hydroxyapatite) composite hydrogel coaxial scaffold was designed to maintain bone volume in the socket.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China.
Bone defect repair remains a great challenge in the field of orthopedics. Human body essential trace element such as copper is essential for bone regeneration, but how to use it in bone defects and the underlying its mechanisms of promoting bone formation need to be further explored. In this study, by doping copper into mesoporous bioactive glass nanoparticles (Cu-MBGNs), we unveil a previously unidentified role of copper in facilitating osteoblast mitophagy and mitochondrial dynamics, which enhance amorphous calcium phosphate (ACP) release and subsequent biomineralization, ultimately accelerating the process of bone regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!