Purpose: Diffusion magnetic resonance imaging (dMRI) quantitatively estimates brain microstructure, diffusion tractography being one clinically utilized framework. To advance such dMRI approaches, direct quantitative comparisons between microscale anisotropy and orientation are imperative. Complete backscattering Mueller matrix polarized light imaging (PLI) enables the imaging of thin and thick tissue specimens to acquire numerous optical metrics not possible through conventional transmission PLI methods. By comparing complete PLI to dMRI within the ferret optic chiasm (OC), we may investigate the potential of this PLI technique as a dMRI validation tool and gain insight into the microstructural and orientational sensitivity of this imaging method in different tissue thicknesses.
Approach: Post-mortem ferret brain tissue samples (whole brain, and OC, ) were imaged with both dMRI and complete backscattering Mueller matrix PLI. The specimens were sectioned and then reimaged with PLI. Region of interest and correlation analyses were performed on scalar metrics and orientation vectors of both dMRI and PLI in the coherent optic nerve and crossing chiasm.
Results: Optical retardance and dMRI fractional anisotropy showed similar trends between metric values and were strongly correlated, indicating a bias to macroscale architecture in retardance. Thick tissue displays comparable orientation between the diattenuation angle and dMRI fiber orientation distribution glyphs that are not evident in the retardance angle.
Conclusions: We demonstrate that backscattering Mueller matrix PLI shows potential as a tool for microstructural dMRI validation in thick tissue specimens. Performing complete polarimetry can provide directional characterization and potentially microscale anisotropy information not available by conventional PLI alone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686408 | PMC |
http://dx.doi.org/10.1117/1.JMI.12.1.016001 | DOI Listing |
J Med Imaging (Bellingham)
January 2025
University of Arizona, College of Biomedical Engineering, Tucson, Arizona, United States.
Purpose: Diffusion magnetic resonance imaging (dMRI) quantitatively estimates brain microstructure, diffusion tractography being one clinically utilized framework. To advance such dMRI approaches, direct quantitative comparisons between microscale anisotropy and orientation are imperative. Complete backscattering Mueller matrix polarized light imaging (PLI) enables the imaging of thin and thick tissue specimens to acquire numerous optical metrics not possible through conventional transmission PLI methods.
View Article and Find Full Text PDFSci Rep
December 2024
Science Group, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
The earliest named stromatolite Cryptozoon Hall, 1884 (Late Cambrian, ca. 490 Ma, eastern New York State), was recently re-interpreted as an interlayered microbial mat and non-spiculate (keratosan) sponge deposit. This "classic stromatolite" is prominent in a fundamental debate concerning the significance or even existence of non-spiculate sponges in carbonate rocks from the Neoproterozoic (Tonian) onwards.
View Article and Find Full Text PDFComputational Mueller matrix polarimetry holds great promise in biomedical studies and clinical applications, providing comprehensive polarization-related vectorial information within the sample. For backscattering polarization imaging systems aimed at in vivo tissue polarimetry, the measurement results can be affected by the Cartesian coordinates transformation due to the vectorial properties of polarized light and the non-collinear characteristics of the measurement system. It can influence the reliability of polarization information decoding and extraction.
View Article and Find Full Text PDFBiosensors (Basel)
April 2024
Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
Polarization imaging and sensing techniques have shown great potential for biomedical and clinical applications. As a novel optical biosensing technology, Mueller matrix polarimetry can provide abundant microstructural information of tissue samples. However, polarimetric aberrations, which lead to inaccurate characterization of polarization properties, can be induced by uneven biomedical sample surfaces while measuring Mueller matrices with complex spatial illuminations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!