Slick potassium channels limit TRPM3-mediated activation of sensory neurons.

Front Pharmacol

Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt, Germany.

Published: December 2024

AI Article Synopsis

  • Specialized heat-sensitive neurons in the skin relay heat sensations, with the sodium-activated potassium channel Slick playing a significant role in controlling noxious heat responses.
  • Researchers created mice lacking Slick in specific sensory neurons (SNS-Slick mice) and found these mice had quicker responses to painful heat tests compared to normal mice.
  • Further experiments revealed that Slick works alongside the heat sensor TRPM3, suggesting that Slick helps to inhibit pain responses by modulating TRPM3 activity in sensory neurons.

Article Abstract

Heat sensation is mediated by specialized heat-sensitive neurons in the somatosensory system that innervates the skin. Previous studies revealed that noxious heat sensation is controlled by the sodium (Na)-activated potassium (K) channel Slick (Kcnt2), which is highly expressed in nociceptive Aδ-fibers. However, the mechanism by which Slick modulates heat sensation is poorly understood. Here, we generated mice lacking Slick conditionally in sensory neurons expressing Nav1.8 (SNS-Slick mice). In SNS-Slick mice, the latency to express any nocifensive behavior was reduced in the hot plate and tail immersion tests. hybridization experiments revealed Slick was highly co-expressed with the essential heat sensor, transient receptor potential (TRP) melastatin (TRPM) 3, but not with TRP vanilloid 1, TRP ankyrin 1, or TRPM2 in sensory neurons. Notably, SNS-Slick mice exhibited increased nocifensive behaviors following intraplantar injection of the TRPM3 activator pregnenolone sulfate. Patch-clamp recordings detected increased Na-dependent outward K current (I) after TRPM3 activation in sensory neurons, which showed no prominent I after the replacement of NaCl with choline chloride. Thus, our study suggests that Slick limits TRPM3-mediated activation of sensory neurons, thereby inhibiting noxious heat sensing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688182PMC
http://dx.doi.org/10.3389/fphar.2024.1459735DOI Listing

Publication Analysis

Top Keywords

sensory neurons
20
activation sensory
12
heat sensation
12
sns-slick mice
12
trpm3-mediated activation
8
noxious heat
8
slick
6
neurons
6
sensory
5
heat
5

Similar Publications

Brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) are known to contribute to both protective and pronociceptive processes. However, their contribution to neuropathic pain after spinal cord injury (SCI) needs further investigation. In a recent study utilizing TrkB mice, it was shown that systemic pharmacogenetic inhibition of TrkB signaling with 1NM-PP1 (1NMP) immediately after SCI delayed the onset of pain hypersensitivity, implicating maladaptive TrkB signaling in pain after SCI.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.

Background: Glaucoma is characterized by progressive optic nerve degeneration that results in irreversible blindness, and it can be considered a neurodegenerative disorder of both the eye and the brain. Increasing evidence suggest that glaucoma shares some common neurodegenerative pathways with Frontotemporal Lobar Degeneration (FTLD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD) among others. Interestingly, a recent study revealed the presence of abnormal TAR DNA-binding protein 43 (TDP-43) inclusions and aggregates in retinal ganglion cells and other retinal cell types in FTLD-TDP patients; however, the significance of this pathology and its impact on retinal function and optical nerve integrity is unknown.

View Article and Find Full Text PDF

Background: Chronic stress promotes life-long risk for neuropsychiatric decline by increasing neuroinflammation and disrupting synaptic health and plasticity. Our lab and others have recently demonstrated that non-invasive gamma sensory stimulation (flicker) modulates immune signaling, restores microglial function, and improves cognitive performance in mouse models of Alzheimer's disease (AD). However, no research to date has studied the effects of flicker in the context of stress.

View Article and Find Full Text PDF

Neurons in the central nervous system (CNS) lose regenerative potential with maturity, leading to minimal corticospinal tract (CST) axon regrowth after spinal cord injury (SCI). In young rodents, knockdown of PTEN, which antagonises PI3K signalling by hydrolysing PIP3, promotes axon regeneration following SCI. However, this effect diminishes in adults, potentially due to lower PI3K activation leading to reduced PIP3.

View Article and Find Full Text PDF

Background: The aim of the present study was to compare the rates of change in Ganglion Cell- Inner Plexiform Layer (GCIPL) and Retinal Nerve Fiber Layer (RNFL) thickness, as measured by Optical Coherence Tomography (OCT) Guided Progression Analysis (GPA) program in control group, Primary Open Angle Glaucoma (POAG) and Pseudoexfoliation Glaucoma (PXG) eyes.

Methods: 60 POAG and 60 PXG patients and 30 control group patients were included in the study. Patients diagnosed with glaucoma were divided into two groups as mild (Mean deviation (MD) > -6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!