This study introduces advancements in electrohydrodynamic (EHD) pumps and the development of a 3D-printable anti-swelling organohydrogel for soft robotics. Using digital light processing (DLP)technology, precise components with less than 1% size variation are fabricated, enabling a unique manifold pump array. This design achieves an output pressure of 90.2 kPa-18 times higher than traditional configurations-and a flow rate of 800 mL min, surpassing previous EHD pumps. To address swelling issues in dielectric liquids, a novel organohydrogel is developed with Young's modulus of 0.33 MPa, 300% stretchability, and a swelling ratio under 10%. Its low swelling is attributed to the shield effect and edge length confinement effect. This durable material ensures consistent pump performance under mechanical stresses like bending and twisting, crucial for dynamic soft robotic environments. These innovations significantly improve EHD pump efficiency and reliability, expanding their potential applications in soft robotics, bioengineering, and vertical farming.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202415210 | DOI Listing |
Surg Endosc
January 2025
Surgery Department, Meander Medical Centre, Maatweg, Amersfoort, 3818 TZ, Utrecht, The Netherlands.
Background: Specific pelvic bone dimensions have been identified as predictors of total mesorectal excision (TME) difficulty and outcomes. However, manual measurement of these dimensions (pelvimetry) is labor intensive and thus, anatomic criteria are not included in the pre-operative difficulty assessment. In this work, we propose an automated workflow for pelvimetry based on pre-operative magnetic resonance imaging (MRI) volumes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electronics Engineering, College of Engineering, Chang Gung University, Taoyuan City, 330, Taiwan.
Reconfigurable modular robots can be used in application domains such as exploration, logistics, and outer space. The robots should be able to assemble and work as a single entity to perform a task that requires high throughput. Selecting an optimum assembly position with minimum distance traveled by robots in an obstacle surrounding the environment is challenging.
View Article and Find Full Text PDFSci Rep
January 2025
Neuro-Robotics Lab, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan.
Humans exploit motor synergies for motor control; however, how they emerge during motor learning is not clearly understood. Few studies have dealt with the computational mechanism for generating synergies. Previously, optimal control generated synergistic motion for the upper limb; however, it has not yet been applied to the high-dimensional whole-body system.
View Article and Find Full Text PDFCan J Surg
January 2025
From the Faculty of Medicine, Université de Montréal, Montréal, Que. (Levett); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Elkaim); the Department of Orthopaedic Surgery, McGill University, Jewish General Hospital, Montréal, Que. (Zukor, Huk, Antoniou)
Background: Robotic technology has been used in total hip arthroplasty (THA) for several years. Despite the advances in this field, perspectives surrounding robotic THA are not fully understood. This study aimed to characterize the landscape of robotic THA on social media.
View Article and Find Full Text PDFJ Med Internet Res
December 2024
Institute for Musculoskeletal Health, Sydney Local Health District, Sydney, Australia.
Background: Advanced technologies are becoming increasingly accessible in rehabilitation. Current research suggests technology can increase therapy dosage, provide multisensory feedback, and reduce manual handling for clinicians. While more high-quality evidence regarding the effectiveness of rehabilitation technologies is needed, understanding of how to effectively integrate technology into clinical practice is also limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!