Lithium (Li) metal anodes (LMAs), which show a great potential in constructing high-specific-energy-density Li metal batteries (LMBs), have abstracted wide research interest. However, the generation of Li dendrites and the repeated change of volume upon Li plating/stripping severely block the practical commercialization of LMBs. Herein, the functional carbon fibers (CFs) decorated with ZnO embedded carbon cage (ZnO@C-d-CFs) were fabricated successfully by a two-step route including the in-situ growth of Zn-based metal organic frameworks (MOFs) and subsequent carbonization process, which enriched the lithiophilic sites of CFs host and improved Li kinetics of Li plating/stripping. Markedly, our designed ZnO@C-d-CFs possessed an obvious surface stability for Li plating/stripping (e. g., 1000 cycles with a CE of ~100 % for ZnO@C-d-CFs||Li cell, 1200 h for Li-ZnO@C-d-CFs|| Li-ZnO@C-d-CFs cell), and demonstrated a great potential in practical LMBs (e. g., a low-capacity decay of 0.067 mAh g per cycle within the monitored 900 cycles in Li-ZnO@C-d-CFs||LiFePO (LFP) cell). The impressive results verified an effectiveness of surface modification on Li host to boost the stable LMAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202402472 | DOI Listing |
J Occup Health
January 2025
Department of Environmental Health, University of Fukui School of Medical Science, Eiheiji, Fukui, Japan.
Objectives: Many chemicals have been used for industrial purposes, and some of them are carcinogenic to humans. However, their molecular mechanisms have not been well understood. Reactive oxygen species are generated from industrial chemicals and contribute to carcinogenesis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
Carbon fiber (CF) has been widely used in aerospace, military, infrastructure, sports, and leisure fields owing to its excellent mechanical properties, superior corrosion and friction resistances, excellent thermal stability, and lightweight. However, the ultrablack appearance derived from the extremely strong absorption of light throughout the entire visible region makes it difficult to satisfy the aesthetic and pleasurable demands of the colorful world and limits their applications in a broader field. Herein, inspired by the , a double-layer ultrathin AlO/TiO composite structure was fabricated on CFs by the atomic layer deposition method.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands.
Wood plastic composites (WPCs) offer a means to reduce the carbon footprint by incorporating natural fibers to enhance the mechanical properties. However, there is limited information on the mechanical properties of these materials under hostile conditions. This study evaluated composites of polypropylene (PP), polystyrene (PS), and polylactic acid (PLA) processed via extrusion and injection molding.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan, ROC.
Polymer matrix composites are popular for their lightweight and high strength. Poly (methyl methacrylate) (PMMA), known for its transparency, can be toughened with polyurethane (PU) to expand its applications. This study further strengthened PU-PMMA by adding carbon fiber powder from offcut fabrics (oCFP), enhancing mechanical and adhesion properties.
View Article and Find Full Text PDFLangmuir
January 2025
College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122 Wuxi, P. R. China.
In the realm of zinc-air batteries, high bifunctional catalytic efficacy is intimately tied to the evaluation of catalysts. Consequently, the pursuit of proficient bifunctional catalysts that can efficiently catalyze both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) remains a paramount objective in this research area. In this study, the spiny cobalt tetroxide (CoO) encapsulated hollow carbon spheres (HCSs) are constructed by anchoring CoO onto HCS via hydrothermal or annealing treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!