Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.33963/v.phj.104050 | DOI Listing |
Kardiol Pol
January 2025
Department of Coronary and Structural Heart Diseases, National Institute of Cardiology, Warszawa, Poland.
Background: Preliminary research indicates that higher iron levels are associated with worse outcomes in patients with coronary artery disease.
Aims: The study aimed to investigate the relationship between iron levels and the type and composition of coronary plaques.
Methods: In patients with ≥1 coronary stenosis ≥50% on computed tomography angiography, iron levels, presence of high-risk plaque features, such as low-attenuation plaque (LAP), napkin-ring sign, positive remodeling, and spotty calcium, as well as type and plaque composition (calcified/fibrous/fibro-fatty/necrotic core) were evaluated.
Kardiol Pol
January 2025
Department of Coronary Disease and Heart Failure, Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland.
Nat Rev Cardiol
January 2025
Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
Rev Cardiovasc Med
December 2024
General Surgery Department, The First Hospital of Anhui University of Science & Technology (Huai Nan First People's Hospital), 232002 Huainan, Anhui, China.
Background: This study aimed to develop and evaluate the detection and classification performance of different deep learning models on carotid plaque ultrasound images to achieve efficient and precise ultrasound screening for carotid atherosclerotic plaques.
Methods: This study collected 5611 carotid ultrasound images from 3683 patients from four hospitals between September 17, 2020, and December 17, 2022. By cropping redundant information from the images and annotating them using professional physicians, the dataset was divided into a training set (3927 images) and a test set (1684 images).
EBioMedicine
December 2024
Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Research University, Paris, France.
Background: Neovascularisation of carotid plaques contributes to their vulnerability. Current imaging methods such as contrast-enhanced ultrasound (CEUS) usually lack the required spatial resolution and quantification capability for precise neovessels identification. We aimed at quantifying plaque vascularisation with ultrasound localization microscopy (ULM) and compared the results to histological analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!