AI Article Synopsis

  • The biphasic system offers a unique approach for complex catalytic processes by combining photocatalysis with hydrogenation, highlighting both its potential and accompanying challenges.
  • Researchers utilized metal-organic frameworks (MOFs) and CdS nanorods to create a dual-layer Pickering emulsion that effectively separates the photocatalytic hydrogen evolution reaction (HER) in the aqueous phase from oil-soluble hydrogenation.
  • This innovative setup achieved an impressive hydrogenation yield of 187.37 mmol·g-1·h-1 and a high apparent quantum yield of 43.24%, demonstrating significant improvements over traditional methods and providing valuable insights for future tandem catalytic processes.

Article Abstract

Biphasic system not only presents a promising opportunity for complex catalytic processes, but also is a grand challenge in efficient tandem reactions. As an emerging solar-to-chemical conversion, the visible-light-driven and water-donating hydrogenation combines the sustainability of photocatalysis and economic-value of hydrogenation. However, the key and challenging point is to couple water-soluble photocatalytic hydrogen evolution reaction (HER) with oil-soluble hydrogenation. Herein, we employed metal-organic frameworks (MOFs) and CdS nanorods to construct a MOF-CdS dual-layer Pickering emulsion (water in oil, W/O), which compartmented aqueous phase for photocatalytic HER and oil phase for hydrogenation. The hydrophobic MOF and hydrophilic CdS were isolated at the inner and outer layers of W/O emulsion, respectively. The molecularly regulated hydrophobicity of MOF controlled the water delivery onto CdS photocatalysts, which realized the synergistic regulation of HER and hydrogenation. In the photocatalytic hydrogenation of cinnamaldehyde, the highest yield of MOF-CdS Pickering emulsion reached 187.37 mmol·g-1·h-1, 30 times that of the counterpart without emulsion (6.44 mmol·g-1·h-1). Its apparent quantum yield reached 43.24% without co-catalysts. To our knowledge, this performance is at a top-level so far. Our work realized the precise regulation of water-oil interface to effectively couple two reactions in different phases, providing new perspective for challenging tandem catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202421341DOI Listing

Publication Analysis

Top Keywords

pickering emulsion
12
dual-layer pickering
8
water delivery
8
water-oil interface
8
photocatalytic hydrogenation
8
hydrogenation
7
emulsion
5
mof-based dual-layer
4
emulsion molecular-level
4
molecular-level gating
4

Similar Publications

Construction of magnetic response nanocellulose particles to realize smart antibacterial of pickering emulsion.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China; School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Smart antibacterial Pickering emulsion can respond to the stimulation of environmental conditions to control the release of antibacterial agents, protecting the quality and safety of food. In this study, FeO was grafted on the cellulose nanocrystal (CNC) via ultrasound-assisted in situ co-precipitation to synthesize the magnetic cellulose nanocomposite particles. When the ratio of FeCl and FeCl was 1.

View Article and Find Full Text PDF

Optical Detection of Proteins Using Microgel-Stabilized Pickering Liquid Crystal-in-Water Emulsions.

Langmuir

January 2025

Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.

Herein, we present a novel liquid crystal (LC)-based sensing platform utilizing microgel-stabilized Pickering LC droplets dispersed in water for simple and label-free detection of proteins in an aqueous environment. This could be achieved by tailoring the surface of 4-cyano-4'-pentylbiphenyl (5CB) LC droplets dispersed in aqueous medium through the interfacial adsorption of poly(-isopropylacrylamide) (PNIPAM) microgel particles, followed by the introduction of model surfactants, such as anionic sodium dodecyl sulfate and cationic dodecyltrimethylammonium bromide. These surfactant/microgel complex-coated LC droplets underwent a configurational transition from radial-to-bipolar under a polarized optical microscope, upon exposure to model proteins, namely bovine serum albumin and lysozyme.

View Article and Find Full Text PDF

Traditional photopolymerizations generally requires an initiator for initiating the polymerization while few cases have created degradable chemical bonds. Moreover, the migration instability and cytotoxicity of photo initiators are posing issues to human health and the environment. In this work, we discovered an initiator-free photo polycondensation system (IFPPC) between polymercaptans and aldehyde monomers, producing high strength plastic materials with exchangeable and degradable dithioacetal groups.

View Article and Find Full Text PDF
Article Synopsis
  • The biphasic system offers a unique approach for complex catalytic processes by combining photocatalysis with hydrogenation, highlighting both its potential and accompanying challenges.
  • Researchers utilized metal-organic frameworks (MOFs) and CdS nanorods to create a dual-layer Pickering emulsion that effectively separates the photocatalytic hydrogen evolution reaction (HER) in the aqueous phase from oil-soluble hydrogenation.
  • This innovative setup achieved an impressive hydrogenation yield of 187.37 mmol·g-1·h-1 and a high apparent quantum yield of 43.24%, demonstrating significant improvements over traditional methods and providing valuable insights for future tandem catalytic processes.
View Article and Find Full Text PDF

Highly efficient enzymatic enrichment of n-3 polyunsaturated fatty acid glycerides via interfacial biocatalysis in Pickering emulsions.

Food Chem

December 2024

Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China. Electronic address:

A novel Pickering interfacial biocatalysis (PIB) system has been, for the first time, successfully applied for the enzymatic selective hydrolysis of algae oils and fish oils to enrich n-3 PUFAs glycerides. Lipase AY 400SD was identified and adsorbed on hydrophobic hollow core-shell silica nanoparticles, resulting in the formation of the immobilized enzyme AY 400SD@HMSS-C. The biocatalyst was employed as an emulsifier to stabilize the water-in-oil Pickering emulsion, resulting in the successful construction of the PIB system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!