Multifunctional ortho-quinones are required for the formation of thiol-catechol-connectivities (TCC) but can be delicate to handle. We present the electrochemical oxidation of the dipeptide DiDOPA, achieving up to 92 % conversion efficiency of the catechols to ortho-quinones. Graphite and stainless steel could be employed as cost-efficient electrodes. The electrochemical activation yields quinone-solutions, which are free of undesired reactive compounds and eliminates the challenging step of isolating the reactive quinones. The DiDOPA quinones were employed in polyaddition reactions with multi-thiols, forming oligomers that functioned as transient enzyme stabilizers (TES). These TCC-TES-additives improved the thermal stability and the activity of tyrosinase in heat stress assays.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202419684DOI Listing

Publication Analysis

Top Keywords

transient enzyme
8
enzyme stabilizers
8
electrosynthesis mussel-inspired
4
mussel-inspired adhesive
4
adhesive polymers
4
polymers novel
4
novel class
4
class transient
4
stabilizers multifunctional
4
multifunctional ortho-quinones
4

Similar Publications

Redosing with Intralymphatic GAD-Alum in the Treatment of Type 1 Diabetes: The DIAGNODE-B Pilot Trial.

Int J Mol Sci

January 2025

Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, 581 83 Linköping, Sweden.

Immunotherapies aimed at preserving residual beta cell function in type 1 diabetes have been successful, although the effect has been limited, or raised safety concerns. Transient effects often observed may necessitate redosing to prolong the effect, although this is not always feasible or safe. Treatment with intralymphatic GAD-alum has been shown to be tolerable and safe in persons with type 1 diabetes and has shown significant efficacy to preserve C-peptide with associated clinical benefit in individuals with the human leukocyte antigen DR3DQ2 haplotype.

View Article and Find Full Text PDF

Abscisic Acid, Microtubules and Phospholipase D-Solving a Cellular Bermuda Triangle.

Int J Mol Sci

December 2024

Molecular Cell Biology, Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.

Rice plants are important food crops that are sensitive to cold stress. Microtubules (MTs) are highly associated with plant response to cold stress. The exogenous application of abscisic acid (ABA) can transiently induce the cold stability of microtubules.

View Article and Find Full Text PDF

is an important medicinal herb; but its long-term cultivation often leads to continuous cropping problems. The underlying cause can be attributed to the accumulation of and alterations in root exudates; which interact with soil-borne pathogens; particularly ; triggering disease outbreaks that severely affect its yield and quality. It is therefore crucial to elucidate the mechanisms by which root exudates induce CCS043 outbreaks.

View Article and Find Full Text PDF

Safety, bactericidal activity, and pharmacokinetics of the antituberculosis drug candidate BTZ-043 in South Africa (PanACEA-BTZ-043-02): an open-label, dose-expansion, randomised, controlled, phase 1b/2a trial.

Lancet Microbe

December 2024

Institute of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Germany; German Center for Infection Research, Munich Partner Site, Munich, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection, and Pandemic Research, Munich, Germany; Unit Global Health, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. Electronic address:

Background: The broad use of bedaquiline and pretomanid as the mainstay of new regimens to combat tuberculosis is a risk due to increasing bedaquiline resistance. We aimed to assess the safety, bactericidal activity, and pharmacokinetics of BTZ-043, a first-in-class DprE1 inhibitor with strong bactericidal activity in murine models.

Methods: This open-label, dose-expansion, randomised, controlled, phase 1b/2a trial was conducted in two specialised tuberculosis sites in Cape Town, South Africa.

View Article and Find Full Text PDF

A single-component flavin-dependent halogenase, AetF, has emerged as an attractive biocatalyst for catalyzing halogenation. However, its flavin chemistry remains unexplored and cannot be predicted due to its uniqueness in sequence and structure compared to other flavin-dependent monooxygenases. Here, we investigated the flavin reactions of AetF using transient kinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!