A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Topological Insulator Heterojunction with Electric Dipole Domain to Boost Polysulfide Conversion in Lithium-Sulfur Batteries. | LitMetric

AI Article Synopsis

  • The study explores heterojunction materials as effective electrocatalysts for enhancing lithium-sulfur (Li-S) battery performance.
  • It introduces a Bi2Te3/TiO2 topological insulator heterojunction that improves sulfur redox reaction kinetics by facilitating mass transport, capturing polysulfides, and speeding up their conversion.
  • The modified Li-S battery achieves impressive results with a specific capacity of 1375 mAh g-1, excellent cycling stability, and high performance even at elevated sulfur loadings.

Article Abstract

The heterojunction materials are considered as promising electrocatalyst candidates that empower advanced lithium-sulfur (Li-S) batteries. However, the detailed functional mechanism of heterojunction materials to boost the sulfur redox reaction kinetics remains unclear. Herein, we construct a multifunctional potential well-type Bi2Te3/TiO2 topological insulator (TI) heterojunction with electric dipole domain to elucidate the synergistic mechanism, which facilitates rapid mass transport, strengthens polysulfide capture ability and accelerates polysulfide conversion. Therefore, the Li-S battery with Bi2Te3/TiO2 TI heterojunction modified separator achieves high utilization of sulfur cathode, delivering a high reversible specific capacity of 1375 mAh g-1 at 0.2 C and long cycling capability with a negligible capacity decay of 0.022% per cycle over 1000 cycles at 1 C. Even with the high sulfur loading of 13.2 mg cm-2 and low E/S ratio of 3.8 µL mg-1, a high area capacity of 11.2 mAh cm-2 and acceptable cycling stability can be obtained. This work provides guidance for designing high-efficiency TI heterojunctions to promote the practical application of Li-S batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202423357DOI Listing

Publication Analysis

Top Keywords

topological insulator
8
insulator heterojunction
8
heterojunction electric
8
electric dipole
8
dipole domain
8
polysulfide conversion
8
heterojunction materials
8
li-s batteries
8
heterojunction
5
domain boost
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!