Defluorinative C-O Coupling between Trifluoromethylarenes and Alcohols via Copper Photoredox Catalysis.

Angew Chem Int Ed Engl

Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.

Published: January 2025

Fluorine-containing compounds have shown unparalleled impacts in the realm of functional molecules, and the ability to prepare novel structures has been crucial in unlocking new properties for applications in pharmaceutical and materials science. Herein, we report a copper-catalyzed, photoinduced defluorinative C-O coupling between trifluoromethylarenes and alcohols. This method allows for direct access to a wide selection of difluorobenzylether (ArCFOR) molecules, including a compound displaying liquid crystal behavior. Through slight modification of the protocol, we were able to generate difluorobenzyliodide (ArCFI) products, another class of synthetically useful fluorine-bearing molecules. Mechanistic investigations first suggested that ArCFI can serve as a reservoir to steadily supply the key ArCF⋅ radical species. Furthermore, experimental evidence supported a mechanism consisting of two collaborative cycles: C-F activation operated by a homoleptic Cu(I) coordinated by two bisphosphine ligands as the photocatalyst and C-O coupling promoted by a Cu(I) ligated by a single bisphosphine ligand. The critical roles of the two salt additives, lithium iodide and zinc acetate, in orchestrating the two cycles were also elucidated. This dual-role copper catalyst demonstrates the power of base metal photoredox catalysis in achieving both substrate activation and chemical bond formation via a single catalytic system.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202419591DOI Listing

Publication Analysis

Top Keywords

c-o coupling
12
defluorinative c-o
8
coupling trifluoromethylarenes
8
trifluoromethylarenes alcohols
8
photoredox catalysis
8
alcohols copper
4
copper photoredox
4
catalysis fluorine-containing
4
fluorine-containing compounds
4
compounds unparalleled
4

Similar Publications

The Lewis acid-catalyzed coupling of alkenes and aldehydes presents a modern, versatile synthetic alternative to classical carbonyl addition chemistry, offering exceptional regio- and stereoselectivity. In this work, we present a comprehensive computational investigation into the reaction mechanism of this transformation. Our findings confirm the occurrence of an enantioselective trans-annular [1,5]-hydride shift step and demonstrate that the enantioselectivity of the reaction arises predominantly from steric clashes between functional groups in the cyclization step.

View Article and Find Full Text PDF

Transition metal catalysis is crucial for the synthesis of complex molecules, with ligands and bases playing a pivotal role in optimizing cross-coupling reactions. Despite advancements in ligand design and base selection, achieving effective synergy between these components remains challenging. We present here a general approach to nickel-catalyzed photoredox reactions employing -butylamine as a cost-effective bifunctional additive, acting as the base and ligand.

View Article and Find Full Text PDF

We report the development and optimization of a scalable flow process for metallaphotoredox (Ir/Ni) C-O coupling, a mild and efficient approach for forming alkyl-aryl ethers, a common motif in medicinal and process chemistry settings. Time-resolved infrared spectroscopy (TRIR) highlighted the amine as the major quencher of the photocatalyst triplet excited state, along with the formation of an Ir(II) species that, in the presence of the Ni cocatalyst, has its lifetime shortened, suggesting reductive quenching of Ir(III)*, followed by reoxidation facilitated by the Ni cocatalyst. TRIR and batch reaction screening was used to develop conditions transferrable to flow, and many processing benefits of performing the reaction in flow were then demonstrated using a simple to construct/operate, small-footprint FEP coil flow reactor, including short (<10 min) space times and reduced catalyst loadings (down to 0.

View Article and Find Full Text PDF

In the CO reduction reactions (CORR), the product selectivity is strongly dependent on the binding energy differences of the key intermediates. Herein, we systematically evaluated the CORR reaction pathways on single transition metal atom doped catalysts TMCu/CuO by density functional theory (DFT) methods and found that *CO is more likely to undergo C-O bond cleavage rather than be hydrogenated on TMCu/CuO (TM = Sc, Ti, V, Cr, Mn, Fe, Co), which facilitates C production with a low-energy pathway of OC-C coupling, while it prefers to be hydrogenated to form CHO on TMCu/CuO (TM = Ni, Cu). The defects of Cu in TMCu/CuO were confirmed to enhance the production of ethanol.

View Article and Find Full Text PDF

The efficient functioning of dye-sensitized solar cells (DSSCs) is governed by the interplay of three essential components: the semiconductor, the dye, and the electrolyte. While the impact of the electrolyte composition on the device's performance has been extensively studied in n-type DSSCs, much less is known about p-type-based devices. Here, we investigate the effect of potential-determining ions on the energetics and stability of dye-sensitized NiO surfaces by using electrochemical, ab initio molecular dynamics simulations, and ab initio electronic structure calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!