Mitochondria-Targeted DNA-Based Nanoprobe for In Situ Monitoring of the Activity of the mtDNA Repair Enzyme and Evaluating Tumor Radiosensitivity.

Anal Chem

New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.

Published: January 2025

AI Article Synopsis

  • Evaluating tumor radiosensitivity is crucial for predicting treatment success, tailoring plans, and reducing side effects, with mtDNA repair activity serving as a key indicator.
  • A novel DNA-based nanoprobe (TPP-Apt-tFNA) is developed to monitor mtDNA repair enzyme activity specifically in tumor cells by targeting mitochondria, enhancing selectivity and accuracy.
  • The research highlights that tumors with high mtDNA repair activity are less sensitive to radiation, indicating potential challenges in radiotherapy outcomes, thus emphasizing the need for new imaging tools in cancer treatment.

Article Abstract

Evaluating tumor radiosensitivity is beneficial for the prediction of treatment efficacy, customization of treatment plans, and minimization of side effects. Tracking the mitochondrial DNA (mtDNA) repair process helps to assess tumor radiosensitivity as mtDNA repair determines the fate of the cell under radiation-induced mtDNA damage. However, current probes developed to monitor levels of DNA repair enzymes suffered from complex synthesis, uncontrollable preparation, limited tumor selectivity, and poor organelle-targeting ability. Especially, the correlation between mtDNA repair activity and inherent radiosensitivity of tumors has not yet been explored. Here, we present a mitochondria-targeted DNA-based nanoprobe (TPP-Apt-tFNA) for in situ monitoring of the activity of the mtDNA repair enzyme and evaluating tumor radiosensitivity. TPP-Apt-tFNA consists of a DNA tetrahedral framework precisely modified with three functional modules on each of the three vertexes, that is, the tumor cell-targeting aptamer, the mitochondrion-targeting moiety, and the apurinic/apyrimidinic endonuclease 1 (APE1)-responsive molecule beacon. Once selectively internalized by tumor cells, the nanoprobe targeted the mitochondrion and specifically recognized APE1 to activate fluorescence, allowing the observation of mtDNA repair activity. The nanoprobe showed elevated APE1 levels in the mitochondria of tumor cells under oxidative stress. Moreover, the nanoprobe enabled the illumination of different levels of APE1-mediated mtDNA repair activity in different cell cycle phases. Furthermore, using the nanoprobe and , we found that tumor cells with high activity of mtDNA repair, which allowed them to recover from radiation-induced mtDNA lesions, had low sensitivity to radiation and an unsatisfactory radiotherapy outcome. Our work provides a new imaging tool for exploring the roles of mtDNA repair activity in diverse biological processes and for guiding tumor radiation treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c04408DOI Listing

Publication Analysis

Top Keywords

mtdna repair
36
tumor radiosensitivity
16
repair activity
16
activity mtdna
12
evaluating tumor
12
tumor cells
12
mtdna
11
repair
10
tumor
10
mitochondria-targeted dna-based
8

Similar Publications

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

Purpose: Preimplantation aneuploidy in humans is one of the primary causes of implantation failure and embryo miscarriage. This study was conducted to gain insight into gene expression changes that may result from aneuploidy in blastocysts through RNA-Seq analysis.

Methods: The surplus embryos of preimplantation genetic testing for aneuploidy (PGT-A) candidate couples with normal karyotype and maternal age < 38 were collected following identical ovarian stimulation protocol.

View Article and Find Full Text PDF

C1QBP exhibits heightened expression across a spectrum of tumours, thereby fostering their proliferation and metastasis, rendering it a pivotal therapeutic target. Nevertheless, to date, no pharmacological agents capable of directly targeting and inducing the degradation of C1QBP have been identified. In this study, we have unveiled a new peptide, PDBAG1, derived from the precursor protein GPD1, employing a peptidomics-based drug screening strategy.

View Article and Find Full Text PDF

Mitochondria-Targeted DNA-Based Nanoprobe for In Situ Monitoring of the Activity of the mtDNA Repair Enzyme and Evaluating Tumor Radiosensitivity.

Anal Chem

January 2025

New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.

Article Synopsis
  • Evaluating tumor radiosensitivity is crucial for predicting treatment success, tailoring plans, and reducing side effects, with mtDNA repair activity serving as a key indicator.
  • A novel DNA-based nanoprobe (TPP-Apt-tFNA) is developed to monitor mtDNA repair enzyme activity specifically in tumor cells by targeting mitochondria, enhancing selectivity and accuracy.
  • The research highlights that tumors with high mtDNA repair activity are less sensitive to radiation, indicating potential challenges in radiotherapy outcomes, thus emphasizing the need for new imaging tools in cancer treatment.
View Article and Find Full Text PDF

Ptosis in human immunodeficiency virus-infected patients under long-term antiretroviral treatment.

Clin Neurol Neurosurg

December 2024

Department of Neurosciences and Mental Health, Unidade Local de Saúde de Santa Maria, Lisbon, Portugal; Faculdade de Medicina-Instituto de Medicina Molecular, Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal.

Objective: To present cases of ptosis in HIV-1 patients on long-term antiretroviral therapy (ART) and review the existing literature.

Methods: Five HIV-1-positive patients with slowly progressive bilateral ptosis underwent a comprehensive diagnostic evaluation, including imaging studies, neurophysiological testing, muscle biopsy, and genetic analysis. A literature review was conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!