Plasma phospho-tau217 as a predictive biomarker for Alzheimer's disease in a large south American cohort.

Alzheimers Res Ther

Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.

Published: January 2025

AI Article Synopsis

  • Blood-based biomarkers like p-tau217 are being studied for their effectiveness in diagnosing Alzheimer's disease (AD), but previous research has mainly focused on non-Hispanic White populations, leading to a knowledge gap across different ethnic backgrounds.
  • A new study involving Peruvians, including mestizos and indigenous groups, examined plasma p-tau217 in 525 individuals, revealing significant associations between the biomarker and AD, especially in those with the APOE-e4 allele, although it did not distinguish between healthy controls and mild cognitive impairment (MCI).
  • The results indicated that p-tau217 levels correlated well with cognitive performance and had an impressive classification performance (ROC-AUC of 82.82%), marking a significant contribution to understanding AD in diverse

Article Abstract

Background: Blood-based Alzheimer's disease (AD) biomarkers have been increasingly employed for diagnostic, prognostic, and therapeutic monitoring purposes, due to accuracy in distinguishing AD pathophysiologic process. Compared to other p-tau isoforms, plasma p-tau217 exhibits stronger associations with AD hallmarks in CSF and brain. However, most studies have been conducted in non-Hispanic Whites, limiting our understanding of the performances and utility of these biomarkers across ethnicities.

Methods: We examined a cohort of Peruvians from the GAPP study, a recently established cohort of Peruvian mestizos from Lima and indigenous groups from Southern Peru (Aymaras and Quechuas). We tested plasma levels of p-tau using the Quanterix Simoa ALZpathp-tau217 assay in 525 samples and tested the association between p-tau217 and clinical diagnosis (healthy controls n = 234 vs. AD n = 113) using generalized mixed regression models, adjusting for sex, age, education, APOE-e4 allele (fixed effects) and study site (random effect). We also tested biomarker levels in MCI (n = 178) vs. other groups. The receiver operating characteristics area under the curve (ROC-AUC) was used to evaluate the biomarker's classification performances.

Result: Participants showed on average 80% Native American ancestry. p-tau217 was significantly associated with AD (β = 2.61, 95%CI = 0.61-4.29) and its levels were inversely correlated with cognitive performances; p-tau217 levels did not differ between controls and MCI (p-value > 0.05). p-tau217 levels were higher in participants carrying at least one APOE-e4 allele (OR = 2.31, 95%CI = 1.85-2.90). The ROC-AUC for p-tau217 was estimated at 82.82% in the fully adjusted model.

Conclusion: To our knowledge, this is the largest study conducted in a South American cohort phenotyped for AD with available p-tau217. Most investigations have previously focused on highly selected cohorts with established AD-endophenotypes (CSF biomarkers, autopsy report, PET etc.), while data on cohorts with clinical assessment are currently lacking, especially in non-European populations.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13195-024-01655-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694372PMC

Publication Analysis

Top Keywords

alzheimer's disease
8
south american
8
american cohort
8
apoe-e4 allele
8
p-tau217 levels
8
p-tau217
7
levels
5
plasma phospho-tau217
4
phospho-tau217 predictive
4
predictive biomarker
4

Similar Publications

Alzheimer's disease and antibody-mediated immune responses to infectious diseases agents: a mendelian randomization study.

Hereditas

January 2025

The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182 Chunhui Road, Longmatan District, Luzhou, Sichuan, 646000, China.

Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder, with antibody-mediated immune responses to infectious diseases agents potentially playing a decisive role in its pathophysiological process. However, the causal relationship between antibodies and AD remains unclear.

Methods: A two-sample Mendelian randomization (MR) analysis was conducted to investigate the causal link between antibody-mediated immune responses to infectious diseases agents and the risk of AD.

View Article and Find Full Text PDF

Background: PSEN1, PSEN2, and APP mutations cause Alzheimer's disease (AD) with an early age at onset (AAO) and progressive cognitive decline. PSEN1 mutations are more common and generally have an earlier AAO; however, certain PSEN1 mutations cause a later AAO, similar to those observed in PSEN2 and APP.

Methods: We examined whether common disease endotypes exist across these mutations with a later AAO (~ 55 years) using hiPSC-derived neurons from familial Alzheimer's disease (FAD) patients harboring mutations in PSEN1, PSEN2, and APP and mechanistically characterized by integrating RNA-seq and ATAC-seq.

View Article and Find Full Text PDF

In this study, new cinnamic acid linked to triazole acetamide derivatives was synthesized and evaluated for anti-Alzheimer and anti-melanogenesis activities. The structural elucidation of all analogs was performed using different analytical techniques, including H-NMR, C-NMR, mass spectrometry, and IR spectroscopy. The synthesized compounds were assessed in vitro for their inhibitory activities against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase enzymes.

View Article and Find Full Text PDF

Background: Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases.

Results: In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed.

View Article and Find Full Text PDF

A nucleolar mechanism suppresses organismal proteostasis by modulating TGFβ/ERK signalling.

Nat Cell Biol

January 2025

Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.

The protein homeostasis (proteostasis) network encompasses a myriad of mechanisms that maintain the integrity of the proteome by controlling various biological functions, including protein folding and degradation. Alas, ageing-associated decline in the efficiency of this network enables protein aggregation and consequently the development of late-onset neurodegenerative disorders, such as Alzheimer's disease. Accordingly, the maintenance of proteostasis through late stages of life bears the promise to delay the emergence of these devastating diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!