Rationale And Objectives: Prostate cancer (PCa) is the second most common cancer among men and a leading cause of cancer-related mortalities. Radiomics has shown promising performances in the classification of PCa grade group (GG) in several studies. Here, we aimed to systematically review and meta-analyze the performance of radiomics in predicting GG in PCa.
Materials And Methods: Adhering to PRISMA-DTA guidelines, we included studies employing magnetic resonance imaging-derived radiomics for predicting GG, with histopathologic evaluations as the reference standard. Databases searched included Web of Sciences, PubMed, Scopus, and Embase. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) and METhodological RadiomICs Score (METRICS) tools were used for quality assessment. Pooled estimates for sensitivity, specificity, likelihood ratios, diagnostic odds ratio, and area under the curve (AUC) were calculated. Cochran's Q and I-squared tests assessed heterogeneity, while meta-regression, subgroup analysis, and sensitivity analysis addressed potential sources. Publication bias was evaluated using Deek's funnel plot, while clinical applicability was assessed with Fagan nomograms and likelihood ratio scattergrams.
Results: Data were extracted from 43 studies involving 9983 patients. Radiomics models demonstrated high accuracy in predicting GG. Patient-based analyses yielded AUCs of 0.93 for GG≥2, 0.91 for GG≥3, and 0.93 for GG≥4. Lesion-based analyses showed AUCs of 0.84 for GG≥2 and 0.89 for GG≥3. Significant heterogeneity was observed, and meta-regression identified sources of heterogeneity. Radiomics model showed moderate power to exclude and confirm the GG.
Conclusion: Radiomics appears to be an accurate noninvasive tool for predicting PCa GG. It improves the performance of standard diagnostic methods, enhancing clinical decision-making.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acra.2024.12.006 | DOI Listing |
Acad Radiol
January 2025
Guangxi Medical University, Nanning, Guangxi 530021, China (C.Z., D.H., B.W., S.W., Y.S., X.W.); Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi 530021, China (C.Z., D.H., B.W., S.W., Y.S., X.W.); Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China (D.H., X.W.). Electronic address:
Rationale And Objectives: Accurate preoperative pathological staging of gastric cancer is crucial for optimal treatment selection and improved patient outcomes. Traditional imaging methods such as CT and endoscopy have limitations in staging accuracy.
Methods: This retrospective study included 691 gastric cancer patients treated from March 2017 to March 2024.
Acad Radiol
January 2025
Department of Radiology, Southeast University Zhongda Hospital, No. 87 Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China (M.Y., J.J.). Electronic address:
Rationale And Objectives: To develop radiomics and deep learning models for differentiating malignant and benign soft tissue tumors (STTs) preoperatively based on fat saturation T2-weighted imaging (FS-T2WI) of patients.
Materials And Methods: Data of 115 patients with STTs of extremities and trunk were collected from our hospital as the training set, and data of other 70 patients were collected from another center as the external validation set. Outlined Regions of interest included the intratumor and the peritumor region extending outward by 5 mm, then the corresponding radiomics features were extracted respectively.
Acad Radiol
January 2025
Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China (B.Z., F.M., X.S., S.L., Q.W.); Department of Urology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong 510080, China (Q.W.). Electronic address:
Rationale And Objectives: To develop an automatic deep-radiomics framework that diagnoses and stratifies prostate cancer in patients with prostate-specific antigen (PSA) levels between 4 and 10 ng/mL.
Materials And Methods: A total of 1124 patients with histological results and PSA levels between 4 and 10 ng/mL were enrolled from one public dataset and two local institutions. An nnUNet was trained for prostate masks, and a feature extraction module identified suspicious lesion masks.
Transl Oncol
January 2025
Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China. Electronic address:
Background And Objective: Though several clinicopathological features are identified as prognostic indicators, potentially prognostic radiomic models are expected to preoperatively and noninvasively predict survival for HCC. Traditional radiomic models are lacking in a consideration for intratumoral regional heterogeneity. The study aimed to establish and validate the predictive power of multiple habitat radiomic models in predicting prognosis of hepatocellular carcinoma (HCC).
View Article and Find Full Text PDFJpn J Radiol
January 2025
Artificial Intelligence and Translational Imaging (ATI) Lab, Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece.
Objective: Calcific tendinopathy, predominantly affecting rotator cuff tendons, leads to significant pain and tendon degeneration. Although US-guided percutaneous irrigation (US-PICT) is an effective treatment for this condition, prediction of patient' s response and long-term outcomes remains a challenge. This study introduces a novel radiomics-based model to forecast patient outcomes, addressing a gap in the current predictive methodologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!