A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metal-Ligand Spin-Lock Strategy for Inhibiting Anion Dimerization in Li-Rich Cathode Materials. | LitMetric

Metal-Ligand Spin-Lock Strategy for Inhibiting Anion Dimerization in Li-Rich Cathode Materials.

J Am Chem Soc

Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.

Published: January 2025

Anion dimerization poses a significant challenge for the application of Li-rich cathode materials (LCMs) in high-energy-density Li-ion batteries because of its deleterious effects, including rapid capacity and voltage decay, sluggish reaction kinetics, and large voltage hysteresis. Herein, we propose a metal-ligand spin-lock strategy to inhibit anion dimerization, which involves introducing an Fe-Ni couple having antiferromagnetic superexchange interaction into the LCM to lock the spin orientations of the unpaired electrons in the anions in the same direction. As proof of concept, we applied this strategy to intralayer disordered LiTiS (ID-LTS) to inhibit S-S dimerization. Electrochemical characterization using the galvanostatic charge/discharge and intermittent titration technique demonstrated the considerably enhanced anionic redox activity, reduced voltage hysteresis, and improved kinetics of the Fe-Ni-couple-incorporated ID-LTS. Fe L-edge X-ray absorption spectroscopy and magnetic susceptibility measurements revealed that the metal-ligand spin-lock effect and consequent suppression of anion dimerization involve ligand-to-metal charge transfer between S and Fe. Further electrochemical tests on a Fe-Ni-couple-incorporated Li-rich layered oxide (LiLiFeNiMnO) indicated the importance of the π backbond in enhancing ligand-to-metal charge transfer from S to Fe. These findings demonstrate the potential application of our metal-ligand spin-lock strategy in the development of high-performance LCMs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c10815DOI Listing

Publication Analysis

Top Keywords

metal-ligand spin-lock
16
anion dimerization
16
spin-lock strategy
12
li-rich cathode
8
cathode materials
8
voltage hysteresis
8
ligand-to-metal charge
8
charge transfer
8
dimerization
5
metal-ligand
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!