Radiative cooling textiles designed to reflect incoming sunlight and enhance mid-infrared (MIR) emissivity show great potential for ensuring personal thermal comfort. Thus, these textiles are gaining prominence as a means of combating the heat stress induced by global warming. Nonetheless, integrating radiative cooling effects into scalable textile materials for personal thermoregulation remains a formidable challenge. To achieve optimal cooling performance, textiles must exhibit finely tuned optical properties and spectral selectivity. In this study, a radiative cooling smart textile was devised by drawing inspiration from the structure of greater flamingo () feathers, which have effective thermoregulatory properties. Specifically, a nanoporous nonwoven material was fabricated from polyacrylonitrile and alumina particles and integrated with a cellulosic cotton knit fabric through an efficient electrospinning and hot pressing process to produce smart textile metafabric (PAC@T) with superior optical properties and wearer comfort. PAC@T exhibited an average fiber diameter of 501.6 nm and pore size of 857.6 nm, resulting in a solar reflectance of 95 ± 1.2% and an MIR emissivity of 91.8 ± 0.98%. It also demonstrated an enhanced water vapor transmission rate (5.5 kg/m/24 h), water vapor evaporation rate (334 ± 2.2 mg/h), and significant radiative cooling performance, leading to temperatures 6.1 °C cooler than those achieved by a traditional knitted textile. Thus, PAC@T offers several distinct advantages, namely superior cooling efficiency, long-term durability, and energy-free operation. In addition, it is formed from accessible raw materials via a potentially scalable process that is likely to have substantial applications in industrial generation of smart textiles for personal thermoregulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c18812 | DOI Listing |
Environ Sci Technol
January 2025
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China.
The record-breaking 2019-2020 Australian wildfires have been primarily linked to climate change and its internal variability. However, the meteorological feedback mechanisms affecting smoke dispersion and wildfire emissions on a synoptic scale remain unclear. This study focused on the largest wildfires occurring between December 25, 2019 and January 10, 2020, under the enhanced subtropical high, when the double peak in wildfire evolution was favored by sustained low humidity and two synchronous increases in temperature and wind.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong.
Adv Mater
December 2024
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
The development of zero-power moisture-harvesting technology in an unsaturated atmosphere is of great significance for coping with global freshwater scarcity. Here, inspired by Pachydactylus rangei's (Namib sand gecko) ability to evade thermal radiation and harvest moisture, a power-free cooling moisture harvester (PFCMH) is fabricated using the continuous, industrialized micro-extrusion compression molding. A Luneburg lens is introduced in the PFCMH for the first time, endowing it with a high reflectivity of ≈92.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Jiangsu Optoelectronic Functional Materials Engineering Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. Electronic address:
Passive radiative cooling (PRC) is an emerging sustainable technology that plays a key role for achieving the goal of carbon neutrality. However, several challenges remain for PRC materials in their practical application in building thermal management, including overcooling problems and unsatisfactory cooling efficiency caused by solar absorption and parasitic heat gains. In this work, fluorinated cellulose-based composite aerogels (FCCA) integrating thermal insulation and PRC were developed by a facile manufacturing strategy that combined phase separation and freeze-drying.
View Article and Find Full Text PDFACS Nano
December 2024
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Ultrafast thermal switches are pivotal for managing heat generated in advanced solid-state applications, including high-speed chiplets, thermo-optical modulators, and on-chip lasers. However, conventional phonon-based switches cannot meet the demand for picosecond-level response times, and existing near-field radiative thermal switches face challenges in efficiently modulating heat transfer across vacuum gaps. To overcome these limitations, we propose an ultrafast thermal switch design based on pump-driven transient polaritons in asymmetric terminals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!