A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced remediation of heavy metal-contaminated soils using biochar and zeolite combinations with additives: A meta-analysis. | LitMetric

AI Article Synopsis

  • Soil heavy metal contamination in agricultural lands poses health risks through potential entry into the food chain, prompting research on remediation materials like biochar (BC) and zeolites (ZE).
  • Both BC and ZE individually reduce the availability of heavy metals such as cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn), with BC achieving reductions of 24% to 10% and ZE achieving reductions ranging from 32% to 39%.
  • The combination of BC and ZE further enhances these reductions, and when paired with certain inorganic additives, the effectiveness against Cd increases significantly, demonstrating that the choice of additive plays a crucial role in the remediation process.

Article Abstract

Soil heavy metal (HM) contamination is a major concern in agricultural lands due to its potential to enter the food chain and its adverse health effects. Remediation materials such as biochar (BC) and zeolites (ZE) have been studied for their potential to mitigate risks associated with soil HM contamination. This meta-analysis evaluates changes in the availability of Cd, Cu, Pb, and Zn following the application of BC and ZE to soil, whether applied individually, in combination (BC + ZE), or with additives (BC + ZE + A). Individually, BC reduced the availability of Cd, Cu, Pb, and Zn in soil by 24.0%, 33.0%, 31.3% and 10.1%, respectively; and ZE reduced these levels by 32.4%, 18.8%, 20.3% and 38.9%. Results indicate that, on average, BC + ZE effectively decreases the availability of Cd, Cu, Pb, and Zn in soils by 32.6%, 54.3%, 35.4%, and 18.3%, respectively. The combination with additives, BC + ZE + A, reduced the Cd and Pb availability by 54.2% and 20.9%, respectively. Most studies were undertaken with Cd, representing 59% of observations, followed by Pb, Zn, and Cu, respectively, with 29%, 8%, and 5%. The small number of studies with Pb, Zn and Cu prevented the creation of subgroups involving these three HMs. Notably, the nature of the additive influences the variation in available Cd content in remediated soils. Inorganic additives combined with BC + ZE demonstrated greater effectiveness in Cd remediation, achieving reductions of available content by 86.8%, compared to those containing clay minerals or organic compounds, with reductions of 27.4% and 15.4%, respectively. These findings enhance our understanding of how BC and ZE can be utilized in soil HM remediation and their effectiveness against different metals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.125617DOI Listing

Publication Analysis

Top Keywords

additives bc + ze + a
8
reduced availability
8
soil
5
enhanced remediation
4
remediation heavy
4
heavy metal-contaminated
4
metal-contaminated soils
4
soils biochar
4
biochar zeolite
4
zeolite combinations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!