Replacement of the essential catalytic aspartate with serine leads to an active form of copper-containing nitrite reductase from the denitrifier Sinorhizobium meliloti 2011.

Biochim Biophys Acta Proteins Proteom

Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA Santa Fe, Argentina.

Published: December 2024

AI Article Synopsis

  • The study details the characterization of a mutated variant of copper-containing nitrite reductase (SmNirK) from S. meliloti, where the catalytic aspartate (Asp) is replaced with serine (Ser) via site-directed mutagenesis.
  • The D134S variant retains the homotrimer structure and similar T1 electron transfer center to the wild-type, but shows altered electronic properties in the T2 active site, impacting its enzymatic efficiency and pH dependence.
  • EPR studies reveal significant changes in the T2 properties due to the mutation, highlighting the role of T2 ligands in catalysis and suggesting a potential mechanism for electron transfer influenced by the Asp/Ser switch.

Article Abstract

We report the molecular, biochemical and spectroscopic characterization and computational calculations of a variant of the copper-containing nitrite reductase from the rhizobial microorganism S. meliloti (SmNirK), in which the catalytic aspartate residue (Asp) has been replaced with serine (Ser, D134S) by site-directed mutagenesis. Like the wild-type enzyme, D134S is a homotrimer with the typical catalytic pocket of two-domain NirK containing two copper centers, one of type 1 (T1) and another of type 2 (T2). The T1 electron transfer center is similar to that of the wild-type enzyme but the electronic and covalent properties of T2 active site are altered by the mutation. As for the wild-type enzyme, the enzymatic activity of D134S is pH-dependent, i.e. it is higher at lower pH values, but the k is an order of magnitude lower. EPR studies showed a decrease in g and an increase in A of D134S relative to wild-type enzyme. This indicates changes in the electronic and covalent properties of T2 upon mutation, which affects the reduction potential of T2 and the T1-T2 reduction potential gap. Taken together, this evidence points to the importance of the ligands of the second coordination sphere of T2 in controlling critical parameters in catalysis. The possibility that Asp/Ser is the switch that triggers T1 → T2 electron transfer upon T2 nitrite binding and the importance of His for the pH-dependent catalytic activity of NirK are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2024.141062DOI Listing

Publication Analysis

Top Keywords

wild-type enzyme
16
catalytic aspartate
8
copper-containing nitrite
8
nitrite reductase
8
electron transfer
8
electronic covalent
8
covalent properties
8
reduction potential
8
replacement essential
4
catalytic
4

Similar Publications

Rhizobium etli is a nitrogen-fixing bacterium that encodes two l-asparaginases. The structure of the inducible R. etli asparaginase ReAV has been recently determined to reveal a protein with no similarity to known enzymes with l-asparaginase activity, but showing a curious resemblance to glutaminases and β-lactamases.

View Article and Find Full Text PDF

is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

Its own architect: Flipping cardiolipin synthase.

Sci Adv

January 2025

Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

Current dogma assumes that lipid asymmetry in biological membranes is actively maintained and dispensable for cell viability. The inner (cytoplasmic) membrane (IM) of is asymmetric. However, the molecular mechanism that maintains this uneven distribution is unknown.

View Article and Find Full Text PDF

Background: Aggregation of transactive response DNA binding protein 43 (TDP-43) is the major pathological feature of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recently, in up to 50% of Alzheimer's disease (AD) cases TDP-43 pathology was discovered and this pathology has been referred to as limbic-predominant age-related TDP43 encephalopathy (LATE). Several studies reported that TDP-43 binds to heat shock protein family B (small) member 1 (HSPB1 or HSP27) but no functional evaluation of this interaction has been explored.

View Article and Find Full Text PDF

Background: Ambroxol is an expectorant under study as a treatment for synucleinopathies, such as Parkinson's disease. It is a pharmacological chaperone of the lysosomal enzyme β-glucocerebrosidase (GCase), increasing this enzyme and subsequently reducing accumulation of alpha-synuclein. Although the mechanism of enhanced clearance is not fully understood, ambroxol stimulates lysosomal function through activation of transcription factor EB (TFEB), which drives hundreds of lysosomal genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!