AI Article Synopsis

  • Hard tick exoskeletons make DNA extraction difficult, prompting researchers to test a modified method for extracting DNA from ethanol-preserved ticks for genetic studies.
  • The new method was compared to three commercial kits and showed similar DNA concentration and purity across different life stages of ticks.
  • The extracted DNA was used for PCR amplification of phylogenetic markers to analyze Amblyomma integrum, a potential disease vector, demonstrating a cost-effective approach that can aid genetic research in low-resource settings.

Article Abstract

Hard tick exoskeletons, composed primarily of chitin, pose a significant challenge for researchers attempting to extract genetic material. This study presents a simple modified, alternative method for extracting DNA from ethanol-preserved hard ticks. The extracted DNA was further used for PCR amplification of phylogenetic markers for population genetics studies. The study also improvises the DNA extraction methods from commercial kits. We have used four DNA extraction methods: Modified Simple Alkaline Lysis, and other commercial kit-based methods (Kit X, Kit Y & Kit Z). The modified method for DNA extraction yielded comparable results in terms of concentration, and purity from all the life stages (adult, nymph, and larvae). The extracted DNA from each method was quantified and subjected to PCR amplification of molecular markers, ITS-1 and ITS-2. The nucleotide sequences from both markers were characterized for the first time and used for phylogenetic analysis of Amblyomma integrum, which is a potential vector for Kyasanur Forest Disease Virus (KFDV), causing monkey fever disease in India. These results demonstrate a cost-effective approach for isolating genomic DNA suitable for PCR amplification and subsequent nucleotide sequencing. Importantly, this simple method offers an option for population genetics study in resource-limited settings, facilitating field research with minimal equipment requirements. Additionally, the study showed tick homogenization can significantly improve DNA yield from commercial kits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2024.105709DOI Listing

Publication Analysis

Top Keywords

pcr amplification
12
dna extraction
12
dna
9
method extracting
8
extracting dna
8
dna ethanol-preserved
8
ethanol-preserved hard
8
hard ticks
8
extracted dna
8
population genetics
8

Similar Publications

Schistosomiasis presents a significant public health challenge, especially in regions with inadequate sanitation. Current diagnostic methods, including the Kato-Katz technique, often lack sensitivity in detecting low parasite loads, prompting the search for more precise alternatives. This study introduces the Sm1-7-qPCR system as a highly sensitive and specific diagnostic tool for identifying S.

View Article and Find Full Text PDF

Nanoparticle-mediated light-driven LAMP combined with test strips for sensitive and rapid visual detection of antibiotic resistance genes.

J Hazard Mater

December 2024

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Antibiotic resistance genes (ARGs) are markers of drug-resistant pathogens, monitoring them contributes to prevent resistance to drugs. The detection methods for ARGs including PCR and isothermal amplification are sensitive and selective. However, it may take several hours or cannot be used on spot.

View Article and Find Full Text PDF

Background: The Alzheimer's Disease Sequencing Project (ADSP) aims to identify genetic variation contributing to the development or protection of Alzheimer's disease (AD) in diverse ancestral populations. The latest ADSP whole genome sequencing (WGS) data release includes over 36,000 individuals from 37 datasets (NIAGADS NG00067.v11 ADSP R4).

View Article and Find Full Text PDF

Rapid and accurate molecular diagnostics are crucial for preventing the global spread of emerging infectious diseases. However, the current gold standard for nucleic acid detection, reverse transcription polymerase chain reaction (RT-PCR), relies heavily on traditional magnetic beads or silica membranes for nucleic acid extraction, resulting in several limitations, including time-consuming processes, the need for trained personnel, and complex equipment. Therefore, there is an urgent need for fully integrated nucleic acid detection technologies that are simple to operate, rapid, and highly sensitive to meet unmet clinical needs.

View Article and Find Full Text PDF

Background: Persistent latent reservoirs of intact HIV-1 proviruses, capable of rebounding despite suppressive antiretroviral therapy (ART), hinder efforts towards an HIV-1 cure. Hence, assays specifically quantifying intact proviruses are crucial to assess the impact of curative interventions. Two recent assays have been utilized in clinical trials: intact proviral DNA assay (IPDA) and quadruplex quantitative PCR (Q4PCR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!