A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An overview of recent progress in the molecular mechanisms and key biological macromolecules involved in limb regeneration of decapods. | LitMetric

An overview of recent progress in the molecular mechanisms and key biological macromolecules involved in limb regeneration of decapods.

Int J Biol Macromol

College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China. Electronic address:

Published: December 2024

AI Article Synopsis

  • Understanding the molecular mechanisms behind limb regeneration in decapods could boost aquaculture by enhancing survival rates, growth, and supporting lab-grown crustacean meat production as a sustainable protein source.
  • The review delves into the specific signaling pathways, genes, and proteins involved in various regeneration stages, starting with immune response and hemolymph coagulation, then moving to blastema formation and limb growth.
  • It also emphasizes the influence of environmental factors, nutrition, and hormonal signals on the regeneration process and points out gaps in current research, suggesting future studies to improve aquaculture practices.

Article Abstract

Understanding the molecular mechanisms of limb regeneration in decapods can significantly enhance aquaculture production by improving survival and growth, as well as facilitating the development of lab-grown crustacean meat as a sustainable protein source. This review explores the molecular mechanisms of decapod limb regeneration, focusing on the key signaling pathways, genes, and proteins involved in this process. The initial stages of regeneration involve immune response and hemolymph coagulation, which are regulated via signaling pathways such as Toll, MAPK, IMD, and JAK/STAT. Subsequent stages, including blastema formation and limb growth, are regulated by signaling pathways such as Wnt, Hippo, Hedgehog, Ecdysteroid, TGF-β, Notch, Insulin-like, Fibroblast Growth Factor, Epidermal Growth Factor, and BMP. This review also discusses the interplay among environmental factors, nutrition, and hormonal signaling in regeneration and how these elements influence regenerative capability. Furthermore, this review highlights existing research gaps in decapod regeneration and suggests future research directions. This review aims to bridge existing gaps in decapod regeneration research and guide future studies toward potential breakthroughs in aquaculture practices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.139354DOI Listing

Publication Analysis

Top Keywords

molecular mechanisms
12
limb regeneration
12
signaling pathways
12
regeneration decapods
8
regulated signaling
8
growth factor
8
existing gaps
8
gaps decapod
8
decapod regeneration
8
regeneration
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!