Aim & Background: Increased efficacy with reduced side effects in cancer treatment is achieved through targeted distribution of anti-cancer medications. Because of their biocompatibility, biodegradability, low toxicity, and target ability under magnetic field, magnetic nanoparticles (MNP) based chitosan nanocomposite have attracted attention among other delivery technologies.
Methodology: MNPs were synthesised using the co-precipitation method. After the successful synthesis of MNPs, it was successfully encapsulated with 5-fluorouracil (5-FU) within chitosan beads, making it ideal for targeted drug delivery to treat breast cancer cells. The properties of MNP-based drug-loaded chitosan nanocomposite were characterised by various characterization techniques like scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), vibrating sample magnetometry (VSM), atomic force microscopy (AFM). Entrapment efficiency and cytotoxicity studies of MNP-based drug-loaded chitosan nanocomposites by MTT were also conducted. The release study of the drug from MNP-based drug-loaded chitosan nanocomposite under different pH conditions was also investigated.
Results: Instrumental analysis showed successful preparation of MNP-based drug-loaded chitosan nanocomposite. The entrapment efficiency of MNP-based drug-loaded chitosan nanocomposite was 85 % to 90 %. MTT study also proved its toxicity against breast cancer cells, and with increased concentration percentage, cell viability decreases. The release study showed that the release of the drug from MNP-based drug-loaded chitosan nanocomposite varied under different pH conditions.
Conclusion: Hence, MNP-based drug-loaded chitosan nanocomposite has the potential to be utilised as a targeted drug delivery vehicle for the treatment of breast cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.139246 | DOI Listing |
Sci Rep
January 2025
Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Smart packaging, also known as intelligent packaging, is responsive to external stimuli, moisture, light, oxygen, heat, pH, and bacterial growth. In this study, polyvinyl alcohol/nanochitosan/phycocyanin nanocomposite (PVA/NCH/PC-NC) for fish fillets of Oncorhynchus mykiss rainbow trout coating was prepared. Five treatments were prepared over a period of 14 days (0, 1, 7 and 14 days) under treatments of T: fish coated with PVA/NCH-NC without PC; T, T T and T fish coated with PVA/NCH/PC-NC (0.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS 60 319-60 203, Compiègne Cedex, France. Electronic address:
Chitosan (CH)-based composite films have attracted increasing attention as promising green food packaging materials due to their biodegradability and ease of fabrication. Additionally, lignin (LN) has been widely used as additive for chitosan-based films to improve their physicochemical properties. In this study, a series of composite films made of chitosan nanoparticles (NCH) as a matrix and alkali lignin nanoparticles (LNPs) as functional filler were prepared.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India.
The efficacy of the nanocomposite of manganese dioxide and diosgenin-incorporated chitosan (MnO/Dio@CS) was assessed by studying the photodegradation of two organic dyes, Acid Green (AG) and Malachite Green Oxalate (MGO), under visible light irradiation. The synthesized MnO/Dio@CS nanocomposites were characterized by Field Emission Scanning Electron Microscopy (FESEM), High-Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), UV-vis spectroscopy. The MnO/Dio@CS nanocomposites exhibited exceptional photocatalytic efficacy, prolonged durability, and quick degradation of the dye solution to 87.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India. Electronic address:
Mater Today Bio
February 2025
Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia.
We explored the feasibility of a self-assembled chitosan nanocomposite incorporating cerium oxide/nanoceria and superparamagnetic iron oxide nanoparticles (Chit-IOCO NPs), conjugated with methotrexate (MTX) and Cy5 dye, as an integrated cancer theranostic nanosystem (Chit-IOCO-MTX-Cy5). In this system, nanoceria serves as an anti-cancer agent, while the superparamagnetic iron oxide nanoparticles function as a negative contrast agent for MR imaging. This dual metal oxide nanocomposite is conjugated with MTX which is a structural analogue of folate, serving both as a targeting mechanism for folate receptors on cancer cells and as a chemotherapeutic drug.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!