AI Article Synopsis

  • Hyperglycemia leads to endothelial inflammation, which significantly contributes to cardiovascular issues in diabetic patients, particularly through mechanisms associated with diabetic kidney injury (DKI).
  • P300 and Ese-1 are critical regulators in this process, where P300 enhances Ese-1 expression, promoting inflammation and advancing the progression of DKI by increasing inflammatory markers in both diabetic mice and human kidney cells.
  • Silencing P300 mitigates hyperglycemia-induced inflammation, revealing its interaction with the Ku protein family (Ku70/Ku86), which influences inflammation pathways, indicating potential targets for therapeutic interventions in diabetes-related complications.

Article Abstract

Endothelial inflammation caused by hyperglycemia contributes to cardiovascular complications in patients with diabetes. Diabetic kidney injury (DKI) is one of the most significant manifestations of diabetes-related renal damage, encompassing both acute and early chronic kidney injury. DKI involves pathological mechanisms linked to inflammatory responses and early renal damage, which, if left unchecked, may progress to diabetic kidney disease. Previous research indicates that both P300 and Ese-1 play pivotal roles in hyperglycemia-induced endothelial inflammation. This study suggests that P300 modulates Ese-1 expression, promoting hyperglycemia-mediated vascular endothelial inflammation and thereby contributing to the occurrence and progression of DKI. Our findings revealed increased levels of tumor necrosis factor α (Tnf-α), p65 phosphorylation, and monocyte chemotactic proteins Mip-1β and Mip-2 in the kidney tissues of diabetic mice and hyperglycemic human renal glomerular microvascular endothelial cells (HRGECs). Additionally, hyperglycemia orchestrated endothelial inflammation through the upregulation of Ese-1 expression in vitro. Furthermore, P300 was found to be upregulated both in vitro and in vivo. Moreover, silencing P300 reduced hyperglycemia-induced inflammatory effects, which could be reversed by overexpressing Ese-1 in HRGECs. Further, P300 was observed to interact with the Ku protein family (Ku70/Ku86), which were downregulated in the kidney tissues of diabetic mice and hyperglycemic HRGECs. siKu70 and siKu86 intensified hyperglycemia-induced endothelial inflammation, an effect counteracted by P300 silencing. In essence, the Ku protein family interacts with P300 to modulate Ese-1 expression in HRGECs, thereby participating in hyperglycemia-induced endothelial inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2024.114399DOI Listing

Publication Analysis

Top Keywords

endothelial inflammation
24
protein family
12
hyperglycemia-induced endothelial
12
ese-1 expression
12
endothelial
8
vascular endothelial
8
p300
8
diabetic kidney
8
kidney injury
8
injury dki
8

Similar Publications

Dihydrotanshinone I (DHT) is an active ingredient derived from Salvia miltiorrhiza. Previous studies have demonstrated that DHT can improve cardiac function in rats with myocardial ischemia-reperfusion injury (IR). However, the mechanism by which DHT improves myocardial injury in rats still requires further research.

View Article and Find Full Text PDF

Antihypertensive effects of rice peptides involve intestinal microbiome alterations and intestinal inflammation alleviation in spontaneously hypertensive rats.

Food Funct

January 2025

Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.

Gut dysbiosis serves as an underlying risk factor for the development of hypertension. The resolution of this dysbiosis has emerged as a promising strategy in improving hypertension. Food-derived bioactive protein peptides have become increasingly more attractive in ameliorating hypertension, primarily due to their anti-inflammatory and anti-oxidant activities.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

VA Boston Healthcare System, Boston, MA, USA.

Background: T-cell infiltration into the brain parenchyma is associated with hyperphosphorylated tau (p-tau) accumulation in neurodegenerative diseases. Chronic traumatic encephalopathy (CTE) is a progressive tauopathy caused by exposure to repetitive head impacts (RHI). CTE is defined by the perivascular accumulation of p-tau at the cortical sulcal depths and can be stratified into mild and severe pathological stages.

View Article and Find Full Text PDF

Background: Up to 84% of patients with Alzheimer's Disease (AD) have vascular damage which precedes cognitive decline. Inflammation induces changes in blood-brain-barrier (BBB) integrity, though the link between induction of inflammation and AD is unclear. IL1β, a cytokine upregulated in patients with AD and in mouse models of the disease, is released and interacts with IL1R1 and its obligate co-receptor, IL1RAP, to induce downstream signaling.

View Article and Find Full Text PDF

Background: Anti-amyloid antibodies have been associated with amyloid-related-imaging-abnormalities (ARIA) in AD patients, causing vasogenic edema and microhemorrhages, especially in ApoE4 carriers. Here, we compared recombinant 3D6-L, a murine version of bapineuzumab, and an isotype control IgG2a monoclonal antibody (mAb) to investigate potential mechanisms, including complement activation, involved in these side effects (ARIA-H or microhemorrhages) following passive immunization.

Method: Plaque-rich 16.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!