Trans-m5C: A transformer-based model for predicting 5-methylcytosine (m5C) sites.

Methods

University of Edinburgh, Queen's Medical Research Institute, Edinburgh, EH164TJ, United Kingdom. Electronic address:

Published: December 2024

5-Methylcytosine (m5C) plays a pivotal role in various RNA metabolic processes, including RNA localization, stability, and translation. Current high-throughput sequencing technologies for m5C site identification are resource-intensive in terms of cost, labor, and time. As such, there is a pressing need for efficient computational approaches. Many existing computational methods rely on intricate hand-crafted features, requiring unavailable features, often leading to suboptimal prediction accuracy. Addressing these challenges, we introduce a novel deep-learning method, Trans-m5C. We first categorize m5C sites into NSUN2-dependent and NSUN6-dependent types for independent feature extraction. Subsequently, meticulously crafted transformer neural networks are employed to distill global features. The prediction of m5C sites is then accomplished using a discriminator built from a a multi-layer perceptron. A rigorous evaluation for the performance of Trans-m5C on experimentally validated m5C data from human and mouse species reveals that our method offers a competitive edge over both baseline and existing methodologies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2024.12.010DOI Listing

Publication Analysis

Top Keywords

m5c sites
12
5-methylcytosine m5c
8
m5c
6
trans-m5c transformer-based
4
transformer-based model
4
model predicting
4
predicting 5-methylcytosine
4
sites 5-methylcytosine
4
m5c plays
4
plays pivotal
4

Similar Publications

Trans-m5C: A transformer-based model for predicting 5-methylcytosine (m5C) sites.

Methods

December 2024

University of Edinburgh, Queen's Medical Research Institute, Edinburgh, EH164TJ, United Kingdom. Electronic address:

5-Methylcytosine (m5C) plays a pivotal role in various RNA metabolic processes, including RNA localization, stability, and translation. Current high-throughput sequencing technologies for m5C site identification are resource-intensive in terms of cost, labor, and time. As such, there is a pressing need for efficient computational approaches.

View Article and Find Full Text PDF

NSUN2 lactylation drives cancer cell resistance to ferroptosis through enhancing GCLC-dependent glutathione synthesis.

Redox Biol

December 2024

China National Center for Bioinformation, Beijing, 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Lactate-mediated lactylation on target proteins is recently identified as the novel posttranslational modification with profound biological functions. RNA 5-methylcytosine (mC) modification possesses dynamic and reversible nature, suggesting that activity of its methyltransferase NSUN2 is actively regulated. However, how NSUN2 activity is response to acidic condition in tumor microenvironment and then regulates cancer cell survival remain to be clarified.

View Article and Find Full Text PDF

Exploration of the mechanism of 5-Methylcytosine promoting the progression of hepatocellular carcinoma.

Transl Oncol

December 2024

Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China. Electronic address:

5-Methylcytosine (m5C) is a ubiquitous RNA modification that is closely related to various cellular functions. However, no studies have comprehensively demonstrated the role of m5C in hepatocellular carcinoma (HCC) progression. In this study, six pairs of HCC and adjacent tissue samples were subjected to methylated RNA immunoprecipitation sequencing to identify precise m5C loci.

View Article and Find Full Text PDF

NSUN2-Mediated R-loop Stabilization as a Key Driver of Bladder Cancer Progression and Cisplatin Sensitivity.

Cancer Lett

December 2024

Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China. Electronic address:

R-loops are critical structures that play pivotal roles in regulating genomic stability and modulating gene expression. This study investigates the interactions between the 5-methylcytosine (mC) methyltransferase NOP2/Sun RNA methyltransferase 2 (NSUN2) and R-loops in the transcriptional dynamics and damage repair process of bladder cancer (BCa) cells. We observed markedly elevated levels of R-loops in BCa cells relative to normal urothelial cells.

View Article and Find Full Text PDF

Cardiac regenerative therapy has recently progressed by reprogramming somatic cells into induced pluripotent stem cells (iPSCs) and advanced by large-scale differentiation-derived cardiomyocytes (hiPSC-CMs). However, repairing damaged cardiac tissues with hiPSC-CMs remains limited due to immune rejection, cardiac arrhythmias, and concerns over tumor formation after hiPSC-CM transplantation. Despite efforts in profiling epigenomic changes during cardiac differentiation, regulatory mechanisms underlying 5-methylcytosine (mC) deposition in RNA mC epitranscriptomic landscape during hiPSC-to-cardiomyocyte differentiation remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!