A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Betaine alleviates methomyl-triggered oxidative stress-mediated cardiopulmonary inflammation in rats through iNOS/Cox2 and Nrf2/HO1/Keap1 signaling pathway. | LitMetric

AI Article Synopsis

  • Methomyl (MET) is a widely used insecticide that causes significant harm to organs like the heart and lungs in humans and animals.
  • Betaine (BET), a natural antioxidant, was tested for its protective effects against MET-induced damage in rats, revealing that MET causes oxidative stress and severe tissue damage while BET mitigates these harmful effects.
  • The research concludes that BET shields against MET-induced cardiovascular injury and lung inflammation by influencing specific molecular pathways that reduce oxidative stress and inflammation.

Article Abstract

Methomyl (MET), a universally used insecticide, has many adverse effects on various organs in both humans and animals including the liver, kidneys, and heart. Betaine (BET), a natural antioxidant, has a protective role against many toxicants-induced cardiovascular disorders. The present study was designed to elucidate the molecular mechanistic way underlying the mitigating effect of BET against MET-induced cardiopulmonary injury and inflammation in rats. Four groups of rats were used and orally administered the consequent materials daily for 28 days: normal saline, BET (250 mg/kg bwt), MET (2 mg/kg bwt), MET + BET. Blood and tissue (heart & lungs) samples were collected to assess the oxidative stress markers, lipid profile, biochemical markers, microscopic appearance, and inflammatory gene regulations. The results proved that MET induced oxidant/antioxidant imbalance, elevation of serum creatine kinase (CK) and lactate dehydrogenase (LDH) levels, and deterioration in lipid profile. The histopathological inspection showed severe myocardial necrosis and interstitial pneumonia along with bronchitis and alveolar damage. There was a marked increase in the intensity of cyclooxygenase-2 (Cox-2) and inducible nitric oxide synthase (iNOS) immunostaining with marked upregulation of the transcriptase levels of keap-1gene and downregulation of nuclear factor erythroid 2-related factor-2 (Nrf-2) and heme oxygenase-1 (HO-1) genes in both heart and lung tissues of MET group. Otherwise, the coadministration of BET with MET markedly alleviated the abovementioned toxicological parameters. We can conclude that BET was able to reduce the MET-induced oxidative stress-mediated cardiovascular injury and pulmonary inflammation by modulating Keap-1/Nrf-2 signaling pathway and inactivating Cox-2 and iNOS expression which therefore reduced further cellular damage and inflammatory response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2024.117223DOI Listing

Publication Analysis

Top Keywords

oxidative stress-mediated
8
inflammation rats
8
signaling pathway
8
bwt met
8
lipid profile
8
met
6
bet
6
betaine alleviates
4
alleviates methomyl-triggered
4
methomyl-triggered oxidative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!