Lacto-N-neotetraose (LNnT) is a primary solid component of human milk oligosaccharides (HMOs) with various promising health effects for infants. LNnT production by GRAS (generally recognized as safe) microorganisms has attracted considerable attention. However, few studies have emphasized Pichia Pastoris as a cell factory for LNnT's production. Here, we have reported the first-ever synthesis of LNnT employing P. pastoris as the host. Initially, LNnT biosynthetic pathway genes β-1,3-N-acetylglucosaminyltransferase (lgtA) and β-1,4-galactostltransferase (lgtB) along with lactose permease (lac12) and galactose epimerase (gal10) were integrated into the genome of P. pastoris, but only 0.139 g/L LNnT was obtained. Second, the titer of LNnT was improved to 0.162 g/L via up-regulating genes to strengthen the supply of precursors, UDP-GlcNAc (Uridine diphosphate N-acetylglucosamine) and UDP-Gal (Uridine diphosphate galactose), for LNnT biosynthesis. Third, by knocking out critical mediator pfk (6-phosphofructokinase) genes in glycolysis, the major glucose metabolic flux was rewired to the LNnT biosynthesis pathway. As a result, the strain accumulated 0.867 g/L LNnT in YPG medium supplemented with glucose and lactose. Finally, LNnT production was increased to 1.24 g/L in a 3 L bioreactor. The work aimed to explore the potential of P. pastoris as a for LNnT production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.enzmictec.2024.110576 | DOI Listing |
Enzyme Microb Technol
December 2024
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China. Electronic address:
Lacto-N-neotetraose (LNnT) is a primary solid component of human milk oligosaccharides (HMOs) with various promising health effects for infants. LNnT production by GRAS (generally recognized as safe) microorganisms has attracted considerable attention. However, few studies have emphasized Pichia Pastoris as a cell factory for LNnT's production.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
Lacto-N-tetraose (LNT) is a functional human milk oligosaccharide (HMO) commercially added to infant formula. Metabolically engineered strains for efficient production of LNT have been widely constructed. However, most of them rely on the use of plasmids, which might bring metabolic burden and the antibiotic issue.
View Article and Find Full Text PDFJ Agric Food Chem
November 2024
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
Benef Microbes
October 2024
Nestlé Health Science, 1800 Vevey, Switzerland.
Cow's milk protein allergy (CMPA) in infancy is associated with intestinal microbial dysbiosis, characterised by low Bifidobacteriaceae levels. The present study aimed to investigate the impact of two human milk oligosaccharides (HMO), lactose (L), and their combination on the faecal microbiome and metabolome of infants with CMPA. Stool samples of 12 term infants with probable CMPA (mean age 4.
View Article and Find Full Text PDFAppl Environ Microbiol
October 2024
APC Microbiome Ireland, University College Cork, Cork, Ireland.
Human milk oligosaccharides (HMOs) are essentially unaffected by the digestive enzymes of the nursling and are known for their ability to enrich certain microbial species in the infant gut microbiota, in particular bifidobacteria. HMO metabolism has been studied in various bifidobacterial species such as , and subsp. .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!