A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nucleocapsid assembly drives Ebola viral factory maturation and dispersion. | LitMetric

Nucleocapsid assembly drives Ebola viral factory maturation and dispersion.

Cell

Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany. Electronic address:

Published: December 2024

AI Article Synopsis

  • Viral factories (VFs) are membrane-less organelles where negative-sense RNA viruses, like Ebola, replicate and encapsidate their genomes.
  • Using advanced imaging techniques, researchers observed how viral nucleocapsids (NCs) change from loose formations to compact structures during the infection process.
  • The study found that as VFs mature, they become less spherical and more integrated with cellular components, which likely aids in the transportation of NCs for virus budding.

Article Abstract

Replication and genome encapsidation of many negative-sense RNA viruses take place in virus-induced membraneless organelles termed viral factories (VFs). Although liquid properties of VFs are believed to control the transition from genome replication to nucleocapsid (NC) assembly, VF maturation and interactions with the cellular environment remain elusive. Here, we apply in situ cryo-correlative light and electron tomography to follow NC assembly and changes in VF morphology and their liquid properties during Ebola virus infection. We show that viral NCs transition from loosely packed helical assemblies in early VFs to compact cylinders that arrange into highly organized parallel bundles later in infection. Early VFs associate with intermediate filaments and are devoid of other host material but become progressively accessible to cellular components. Our data suggest that this process is coupled to VF solidification, loss of sphericity, and dispersion and promotes cytoplasmic exposure of NCs to facilitate their transport to budding sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2024.11.024DOI Listing

Publication Analysis

Top Keywords

nucleocapsid assembly
8
liquid properties
8
early vfs
8
assembly drives
4
drives ebola
4
ebola viral
4
viral factory
4
factory maturation
4
maturation dispersion
4
dispersion replication
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!