A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Physiological mechanisms of Carya illinoensis tolerance to manganese stress. | LitMetric

Physiological mechanisms of Carya illinoensis tolerance to manganese stress.

Plant Physiol Biochem

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China. Electronic address:

Published: December 2024

Manganese (Mn) is an essential element for plant growth but can be toxic at high levels. Pecan (Carya illinoensis), an important nut-producing species, has been observed to exhibit tolerance to high Mn levels. In this study, pecan seedlings were exposed to a nutrient solution containing either 2 μM (control) or 1000 μM (excess) MnSO to investigate the physiological mechanisms. Despite substantial increases in Mn concentration in all pecan tissues, the presence of excess Mn did not induce visible symptoms of Mn toxicity on pecan leaves, nor did it result in any changes in malondialdehyde (MDA) levels. Photosynthetic rate and chlorophyll fluorescence parameters also remained unchanged. Subsequent examination revealed more cell layers and greater cell numbers in leaf palisade mesophyll tissue of Mn-treated plants compared with the control group. Cell length, and cell area decreased significantly in response to excess Mn, but total chloroplast area was unchanged and chloroplast structure remained intact. Subcellular fractionation analysis demonstrated that the cell walls, and to a lesser extent the soluble fraction, contained the majority of the Mn in leaves. The presence of excess Mn caused a marked increase in leaf concentrations of malic acid and citric acid, potential chelators of Mn. Our results suggest that the majority of Mn was sequestered in the leaf cell walls and may have been present as less-toxic chelated organic acids, thereby safeguarding the primary Mn target, the chloroplast, and ultimately conferring robust Mn tolerance in pecan.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.109461DOI Listing

Publication Analysis

Top Keywords

physiological mechanisms
8
carya illinoensis
8
high levels
8
presence excess
8
cell walls
8
cell
6
pecan
5
mechanisms carya
4
illinoensis tolerance
4
tolerance manganese
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!