Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Exciting developments in new experimental methods for multidimensional solid-state NMR spectroscopy have recently been achieved using optimal-control theory. These results, in turn, have triggered the development of new pulse sequences based on traditional analytical theories. This trend article summarises the key steps leading to these advancements. It also describes additional applications of optimal control beyond structural biology and envisions similar progress in the NMR of solid materials. Despite attractive features of optimal-control pulse sequences demonstrated in the proof-of-concept studies, their experimental utilization remains sparse, probably due to the lack of awareness among experimentalists. We hope this mini-review helps to spread optimal-control methods into routine experimental workflows. Furthermore, we offer a personal outlook on how numerical optimisations could in general enhance the experimental capabilities of solid-state NMR in the near future, with optimal control serving as a pioneer exploring new possibilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ssnmr.2024.101984 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!