Tricuspid valve edge-to-edge repair simulations are highly sensitive to annular boundary conditions.

J Mech Behav Biomed Mater

Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Austin, TX, 78712, USA; Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, 2617 Wichita Street, Austin, TX, 78712, USA; Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton Street, Austin, TX, 78712, USA; The Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, 201 E. 24th Street, Austin, TX, 78712, USA. Electronic address:

Published: December 2024

Transcatheter edge-to-edge repair (TEER) simulations may provide insight into this novel therapeutic technology and help optimize its use. However, because of the relatively short history and technical complexity of TEER simulations, important questions remain unanswered. For example, there is no consensus on how to handle the annular boundary conditions in these simulations. In this short communication, we tested the sensitivity of such simulations to the choice of annular boundary conditions using a high-fidelity finite element model of a human tricuspid valve. Therein, we embedded the annulus among elastic springs to simulate the compliance of the perivalvular myocardium. Next, we varied the spring stiffness parametrically and explored the impact on two key measures of valve function: coaptation area and leaflet stress. Additionally, we compared our results to simulations with a pinned annulus. We found that a compliant annular boundary condition led to a TEER-induced "annuloplasty effect," i.e., annular remodeling, as observed clinically. Moreover, softer springs led to a larger coaptation area and smaller leaflet stresses. On the other hand, pinned annular boundary conditions led to unrealistically high stresses and no "annuloplasty effect." Furthermore, we found that the impact of the boundary conditions depended on the clip position. Our findings in this case study emphasize the importance of the annular boundary condition in tricuspid TEER simulations. Thus, we recommend that care be taken when choosing annular boundary conditions and that results from simulations using pinned boundaries should be interpreted with caution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2024.106879DOI Listing

Publication Analysis

Top Keywords

annular boundary
28
boundary conditions
24
teer simulations
12
tricuspid valve
8
edge-to-edge repair
8
simulations
8
annular
8
boundary
8
conditions simulations
8
coaptation area
8

Similar Publications

The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.

View Article and Find Full Text PDF

To investigate the clinicopathological and molecular genetic characteristics of intracranial mesenchymal tumors with FET::CREB fusion transcript. The clinical and imaging data of 6 cases of intracranial mesenchymal tumors with FET::CREB fusion from December 2018 to December 2023 were collected at the First Affiliated Hospital of Zhengzhou University. Their histological features, immunophenotype and molecular characteristics were analyzed.

View Article and Find Full Text PDF

Tricuspid valve edge-to-edge repair simulations are highly sensitive to annular boundary conditions.

J Mech Behav Biomed Mater

December 2024

Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Austin, TX, 78712, USA; Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, 2617 Wichita Street, Austin, TX, 78712, USA; Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton Street, Austin, TX, 78712, USA; The Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, 201 E. 24th Street, Austin, TX, 78712, USA. Electronic address:

Transcatheter edge-to-edge repair (TEER) simulations may provide insight into this novel therapeutic technology and help optimize its use. However, because of the relatively short history and technical complexity of TEER simulations, important questions remain unanswered. For example, there is no consensus on how to handle the annular boundary conditions in these simulations.

View Article and Find Full Text PDF

Objectives: Our study aimed to elucidate synovial plica (SP) of the elbow histological characteristics and the anatomical relationship with adjacent structures. Subsequently, we sought to assess the relationship between SP and clinical symptoms as well as magnetic resonance imaging (MRI) features in patients with chronic lateral epicondylitis.

Methods: MRI was performed on eight cadaveric elbows specimens.

View Article and Find Full Text PDF
Article Synopsis
  • * The model uses the differential quadrature finite element method (DQFEM) based on first-order shear deformation theory (FSDT) and has been validated through comparisons with existing literature, ABAQUS software, and experimental results.
  • * The research aims to understand how different structural properties and boundary conditions affect the vibration frequencies of these plates, providing insights for the design and stability of lightweight rotor structures in applications like aircraft engines.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!