Genome mining of nonenzymatic ortho-quinone methide-based pseudonatural products from ascidian-derived fungus Diaporthe sp.SYSU-MS4722.

Bioorg Chem

School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China. Electronic address:

Published: December 2024

AI Article Synopsis

  • Ortho-quinone methides (o-QMs) are reactive intermediates formed from clavatol that lead to pseudonatural products (PNPs) in fungi, which can have significant biological activities.
  • Genome mining identified a clavatol biosynthetic gene cluster (BGC) in the Diaporthe sp. SYSU-MS4722 fungus, allowing for the heterologous expression of key genes in Aspergillus oryzae NSAR1, leading to the discovery of 13 new clavatol-based PNPs.
  • Structural analysis using various spectroscopic techniques confirmed the identities of these compounds, revealing several with notable anti-fibrotic activity.

Article Abstract

Ortho-quinone methides (o-QMs), generated by oxidative dehydration of clavatol, are highly reactive intermediates in biosynthesis that give rise to a variety of clavatol-containing pseudonatural products (PNPs) in fungi through intra- and intermolecular nonenzymatic cyclization/addition reaction, and some compounds have significant biological activities. Here we report our genome mining efforts on a cryptic clavatol biosynthetic gene cluster (BGC) from an ascidian-derived fungus Diaporthe sp. SYSU-MS4722. The core genes NR-PKS (DiaG), Esterase (DiaF) derived from the fungus Diaporthe sp. SYSU-MS4722 clavatol BGC and the known α-ketoglutarate-dependent nonheme iron enzymes (ClaD) were heterologously expressed in the Aspergillus oryzae NSAR1 (A. oryzae NSAR1). Thirteen new monomeric, dimeric, and trimeric clavatol-based PNPs (7-19), together with three known compounds (20-22) were isolated from the above transformant. Their structures including absolute configurations were elucidated by spectroscopic analysis (UV, IR, HR-ESI-MS, 1D and 2D NMR data), complemented with the X-ray crystallography, the comparison of the experimental and calculated ECD spectra, and gauge-independent atomic orbital (GIAO) NMR calculations. Based on the structural characteristics, their plausible biosynthetic pathways were proposed. Notably, Compounds 8, 9, 14 and 16 exhibited potent anti-fibrotic activity with EC values of 28.9, 10.0, 3.5 and 30.1 μM, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2024.108081DOI Listing

Publication Analysis

Top Keywords

fungus diaporthe
12
genome mining
8
pseudonatural products
8
ascidian-derived fungus
8
diaporthe sysu-ms4722
8
oryzae nsar1
8
mining nonenzymatic
4
nonenzymatic ortho-quinone
4
ortho-quinone methide-based
4
methide-based pseudonatural
4

Similar Publications

Genome mining of nonenzymatic ortho-quinone methide-based pseudonatural products from ascidian-derived fungus Diaporthe sp.SYSU-MS4722.

Bioorg Chem

December 2024

School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China. Electronic address:

Article Synopsis
  • Ortho-quinone methides (o-QMs) are reactive intermediates formed from clavatol that lead to pseudonatural products (PNPs) in fungi, which can have significant biological activities.
  • Genome mining identified a clavatol biosynthetic gene cluster (BGC) in the Diaporthe sp. SYSU-MS4722 fungus, allowing for the heterologous expression of key genes in Aspergillus oryzae NSAR1, leading to the discovery of 13 new clavatol-based PNPs.
  • Structural analysis using various spectroscopic techniques confirmed the identities of these compounds, revealing several with notable anti-fibrotic activity.
View Article and Find Full Text PDF

Diaporthe gulyae and D. helianthi cause Phomopsis stem canker, which is a yield-limiting fungal disease of sunflower (Helianthus annuus L.) in the United States.

View Article and Find Full Text PDF

The application of traditional morphological and ecological species concepts to closely related, asexual fungal taxa is challenging due to the lack of distinctive morphological characters and frequent cosmopolitan and plurivorous behaviour. As a result, multilocus sequence analysis (MLSA) has become a powerful and widely used tool to recognise and delimit independent evolutionary lineages (IEL) in fungi. However, MLSA can mask discordances in individual gene trees and lead to misinterpretation of speciation events.

View Article and Find Full Text PDF

Polyketide production in a mangrove-associated fungus , induced by chemical epigenetic modification.

Nat Prod Res

December 2024

Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, College of Pharmacy, Guangxi Medical University, Nanning, China.

Studies on the chemical composition of endophytic fungus , isolated from the L., by using epigenetic modification to activate clusters of biosynthetic genes that are silenced or poorly expressed in fungi, resulting in obtainment of ten polyketides. Among these compounds were six new compounds, including cytosporin E2 (), cytosporin D1 (), cytosporin G1 (), cytosporin J1 (), cytosporin K1 (), cytosporin F1 (), and four known compounds, cytosporin E (), cytosporin Y3 (), cytosporin D (), and cytosporin L ().

View Article and Find Full Text PDF

Antifungal, Antioxidant Activity, and GC-MS Profiling of Diaporthe amygdali GWS39: A First Report Endophyte from Geranium wallichianum.

Curr Microbiol

December 2024

Plant Pathology, Mycology and Microbiology Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.

Endophytic fungi serve as vital reservoirs of natural products. This study investigates the role of the endophytic fungus, Diaporthe amygdali GWS39, isolated from Geranium wallichianum D. Don Ex Sweet aerial stem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!