A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The discharge of chlorinated effluent from wastewater treatment plants enhances dissolved oxygen in the receiving river: From laboratory study to practical application. | LitMetric

The discharge of chlorinated effluent from wastewater treatment plants enhances dissolved oxygen in the receiving river: From laboratory study to practical application.

Water Res

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.

Published: December 2024

Dissolved oxygen (DO) is essential for the health of aquatic ecosystems, supporting biogeochemical cycles and the decomposition of organic matter. However, continuous untreated external inputs from illicit discharges or sewer overflows, coupled with inadequate ecological base flow, have led to widespread river deoxygenation and serious ecological crises. This study demonstrates that chlorinated wastewater treatment plant (WWTP) effluent can significantly enhance DO levels in downstream rivers, particularly in areas with high pollution loads or poor ecological base flow. Notably, DO increases in receiving waters were positively correlated with initial chorine doses. Residual chlorine in WWTP effluent reduced inorganic nitrogen and dissolved organic matter (DOM). Analysis of DOM and molecular properties showed that residual chlorine preferentially reacts with low-molecular-weight organics like amino acids, increasing their hydrophobicity and electrophilicity. These molecular changes inhibit enzyme interactions, reducing the bioavailability of these compounds for oxygen-consuming processes. Field studies demonstrated that through on-site optimization of the full-scale WWTP disinfection process, specifically by controlling residual chlorine levels in effluents, DO levels downstream increased by an average of 15 %, with a maximum of 48 % compared to upstream levels, while typical disinfection byproducts (i.e., trihalomethanes, haloacetic acids and haloacetonitriles) remained below regulatory thresholds. This work provides new insights into the positive effects of chlorinated WWTP effluent on DO levels in receiving waters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.123012DOI Listing

Publication Analysis

Top Keywords

wwtp effluent
12
residual chlorine
12
wastewater treatment
8
dissolved oxygen
8
organic matter
8
ecological base
8
base flow
8
levels downstream
8
receiving waters
8
levels
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!