A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design and use of a Denoising Convolutional Autoencoder for reconstructing electrocardiogram signals at super resolution. | LitMetric

Design and use of a Denoising Convolutional Autoencoder for reconstructing electrocardiogram signals at super resolution.

Artif Intell Med

Department of Computer Science and Technology, Cambridge University, Cambridge, United Kingdom. Electronic address:

Published: December 2024

Electrocardiogram signals play a pivotal role in cardiovascular diagnostics, providing essential information on electrical hearth activity. However, inherent noise and limited resolution can hinder an accurate interpretation of the recordings. In this paper an advanced Denoising Convolutional Autoencoder designed to process electrocardiogram signals, generating super-resolution reconstructions is proposed; this is followed by in-depth analysis of the enhanced signals. The autoencoder receives a signal window (of 5 s) sampled at 50 Hz (low resolution) as input and reconstructs a denoised super-resolution signal at 500 Hz. The proposed autoencoder is applied to publicly available datasets, demonstrating optimal performance in reconstructing high-resolution signals from very low-resolution inputs sampled at 50 Hz. The results were then compared with current state-of-the-art for electrocardiogram super-resolution, demonstrating the effectiveness of the proposed method. The method achieves a signal-to-noise ratio of 12.20 dB, a mean squared error of 0.0044, and a root mean squared error of 4.86%, which significantly outperforms current state-of-the-art alternatives. This framework can effectively enhance hidden information within signals, aiding in the detection of heart-related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.artmed.2024.103058DOI Listing

Publication Analysis

Top Keywords

electrocardiogram signals
12
denoising convolutional
8
convolutional autoencoder
8
current state-of-the-art
8
squared error
8
signals
6
design denoising
4
autoencoder
4
autoencoder reconstructing
4
electrocardiogram
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!