Hydrothermal carbonization (HTC) treatment is a promising method to transforming waste biomass into valuable resources and promoting waste recycling, especially for high nitrogen feedstocks. While small-sized hydrochar particle (≥0.45 μm) released from its solid product (hydrochar) application demonstrated large knowledge gaps compared with its original hydrochar and "secondary char" from model biomass (like glucose, sucrose, and starch). Thus, hydrochar particles derived from typical high nitrogen biomass, kitchen garbage (KG), and blue-green algae mud (AM), were collected to investigate their basic properties, microstructures and corresponding formation mechanisms. The results were: 1) the micron-sized hydrochar particles with yields as 3.42-7.86 wt% presented special characteristics, i.e., poor porous structures, moderate pH value, negative surface charge and higher surface hydrophobicity (contact angles as 95.00-117.67°) relative to original hydrochar and secondary char; 2) micronuclei aromatic core and hydrophobic hydrothermal polymers (methoxyl groups/alkyl chain with ether and carboxy groups) were identified in these hydrochar microparticles (HMPs) by jointly using differential thermogravimetry (DTG) analysis, Gaussian fitting model and thermogravimetric analysis combined with Fourier transform infrared spectrometry and mass spectrometry (TG-FTIR-MS) analysis; 3) polycondensation/cyclization reactions and Maillard/Mannich reaction in the KGHMPs, as well as solid-solid conversion and Maillard/Mannich reaction, polymerization reaction in AMHMPs core and its shell were proposed as their dominated formation mechanisms. The conclusions of this study indicated strong binding of HMPs with NH, metals, and hydrophobic contaminants, and further reinforcing these application effects as soil fertilizer and decontaminant in soil/water for the N conversion, which also significantly depend on HTC temperature and feedstock.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2024.12.024 | DOI Listing |
BMC Plant Biol
January 2025
Hebei Agricultural University, Baoding, China.
Background: Nitrogen (N) deposition has become a major driving factor affecting the balance of terrestrial ecosystems, changing the soil environment, element balance and species coexistence relationships, driving changes in biodiversity and ecosystem structure and function. Human-induced nitrogen input leads to a high NH/ NO ratio in soil. However, relatively few studies have investigated the effects of different nitrogen sources on forest plant-microbial symbionts.
View Article and Find Full Text PDFBMC Nephrol
January 2025
Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: The prevalence of chronic kidney disease (CKD) is estimated to be about 13.4% worldwide. Studies have shown that CKD accounts for up to 2% of the health cost burden.
View Article and Find Full Text PDFWater Res
December 2024
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China. Electronic address:
Activation of HO cleavage for H* production by defect engineering eliminates the insufficient supply of protons in the NORR process under neutral conditions. However, it remains challenging to precisely control the defect formation for optimizing the equilibrium between H* production and H* binding. Here, we propose a strategy to boost defect generation through S-doping induced NiFe-LDH lattice distortion, and successfully optimize the balance of H* production and binding.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
This study introduces an innovative bio-based sorbent bead crafted by integrating chitosan (CS) biopolymers, Fe(NO3)3 and polydopamine nanoparticles (PDA NPs) via glutaraldehyde crosslinking. The primary focus of this study was the concurrent separation of diverse tetracycline antibiotics (TCs), followed by rigorous reversed-phase liquid chromatography analysis. The fabricated CS/Fe@PDA sorbent beads were comprehensively characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy, revealing a surface rich in active carbon (C), nitrogen (N), and oxygen (O) moieties.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
Zhenjiang College, Zhenjiang, 212000, PR China.
Ascorbic acid (AA) is used as a food additive for its antibacterial and antioxidant properties. However, excessive intake of AA is harmful to humans. Therefore, the detection of Fe and AA is generally recognized to be meaningful.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!