Novel insights into released hydrochar particle derived from typical high nitrogen waste biomass: Special properties, microstructure and formation mechanism.

Waste Manag

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain/Scientific Observing and Experimental Station of Arable Land Conservation (Jiangsu), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China. Electronic address:

Published: December 2024

AI Article Synopsis

  • Hydrothermal carbonization (HTC) transforms waste biomass, particularly high nitrogen feedstocks like kitchen garbage and blue-green algae, into valuable resources, but the characteristics of small hydrochar particles remain underexplored.
  • Hydrochar particles show unique properties such as poor porosity, moderate pH, negative charge, and high hydrophobicity, which differ from the original hydrochar and secondary char derived from simpler biomasses.
  • The study identifies complex formation mechanisms through various chemical reactions in the hydrochar microparticles, highlighting their potential as soil fertilizers and decontaminants while emphasizing that effectiveness is influenced by HTC temperature and type of biomass used.

Article Abstract

Hydrothermal carbonization (HTC) treatment is a promising method to transforming waste biomass into valuable resources and promoting waste recycling, especially for high nitrogen feedstocks. While small-sized hydrochar particle (≥0.45 μm) released from its solid product (hydrochar) application demonstrated large knowledge gaps compared with its original hydrochar and "secondary char" from model biomass (like glucose, sucrose, and starch). Thus, hydrochar particles derived from typical high nitrogen biomass, kitchen garbage (KG), and blue-green algae mud (AM), were collected to investigate their basic properties, microstructures and corresponding formation mechanisms. The results were: 1) the micron-sized hydrochar particles with yields as 3.42-7.86 wt% presented special characteristics, i.e., poor porous structures, moderate pH value, negative surface charge and higher surface hydrophobicity (contact angles as 95.00-117.67°) relative to original hydrochar and secondary char; 2) micronuclei aromatic core and hydrophobic hydrothermal polymers (methoxyl groups/alkyl chain with ether and carboxy groups) were identified in these hydrochar microparticles (HMPs) by jointly using differential thermogravimetry (DTG) analysis, Gaussian fitting model and thermogravimetric analysis combined with Fourier transform infrared spectrometry and mass spectrometry (TG-FTIR-MS) analysis; 3) polycondensation/cyclization reactions and Maillard/Mannich reaction in the KGHMPs, as well as solid-solid conversion and Maillard/Mannich reaction, polymerization reaction in AMHMPs core and its shell were proposed as their dominated formation mechanisms. The conclusions of this study indicated strong binding of HMPs with NH, metals, and hydrophobic contaminants, and further reinforcing these application effects as soil fertilizer and decontaminant in soil/water for the N conversion, which also significantly depend on HTC temperature and feedstock.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2024.12.024DOI Listing

Publication Analysis

Top Keywords

high nitrogen
12
hydrochar
8
hydrochar particle
8
derived typical
8
typical high
8
waste biomass
8
original hydrochar
8
hydrochar particles
8
formation mechanisms
8
maillard/mannich reaction
8

Similar Publications

Background: Nitrogen (N) deposition has become a major driving factor affecting the balance of terrestrial ecosystems, changing the soil environment, element balance and species coexistence relationships, driving changes in biodiversity and ecosystem structure and function. Human-induced nitrogen input leads to a high NH/ NO ratio in soil. However, relatively few studies have investigated the effects of different nitrogen sources on forest plant-microbial symbionts.

View Article and Find Full Text PDF

Background: The prevalence of chronic kidney disease (CKD) is estimated to be about 13.4% worldwide. Studies have shown that CKD accounts for up to 2% of the health cost burden.

View Article and Find Full Text PDF

Promoting defect formation and inhibiting hydrogen evolution by S-doping NiFe layered double hydroxide for electrocatalytic reduction of nitrate to ammonia.

Water Res

December 2024

Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China. Electronic address:

Activation of HO cleavage for H* production by defect engineering eliminates the insufficient supply of protons in the NORR process under neutral conditions. However, it remains challenging to precisely control the defect formation for optimizing the equilibrium between H* production and H* binding. Here, we propose a strategy to boost defect generation through S-doping induced NiFe-LDH lattice distortion, and successfully optimize the balance of H* production and binding.

View Article and Find Full Text PDF

This study introduces an innovative bio-based sorbent bead crafted by integrating chitosan (CS) biopolymers, Fe(NO3)3 and polydopamine nanoparticles (PDA NPs) via glutaraldehyde crosslinking. The primary focus of this study was the concurrent separation of diverse tetracycline antibiotics (TCs), followed by rigorous reversed-phase liquid chromatography analysis. The fabricated CS/Fe@PDA sorbent beads were comprehensively characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy, revealing a surface rich in active carbon (C), nitrogen (N), and oxygen (O) moieties.

View Article and Find Full Text PDF

Ascorbic acid (AA) is used as a food additive for its antibacterial and antioxidant properties. However, excessive intake of AA is harmful to humans. Therefore, the detection of Fe and AA is generally recognized to be meaningful.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!