A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting benefit from PARP inhibitors using deep learning on H&E-stained ovarian cancer slides. | LitMetric

AI Article Synopsis

  • Ovarian cancer patients with Homologous Recombination Deficiency (HRD) may benefit from PARP inhibitor therapy after platinum chemotherapy, and predicting this benefit through whole slide images (WSIs) could provide a quicker and less costly alternative to molecular tests.
  • A Deep Learning (DL) model was trained on H&E stained WSIs using a specific HRD ground truth, and it was tested on a separate cohort to see how well it predicted HRD status and the benefit of olaparib treatment.
  • Although the model showed potential, with a significant improvement in progression-free survival (PFS) for HRD positive patients treated with PARP inhibitors, its overall prediction accuracy was lower than desired, indicating that further

Article Abstract

Purpose: Ovarian cancer patients with a Homologous Recombination Deficiency (HRD) often benefit from polyadenosine diphosphate-ribose polymerase (PARP) inhibitor maintenance therapy after response to platinum-based chemotherapy. HR status is currently analyzed via complex molecular tests. Predicting benefit from PARP inhibitors directly on histological whole slide images (WSIs) could be a fast and cheap alternative.

Patients And Methods: We trained a Deep Learning (DL) model on H&E stained WSIs with "shrunken centroid" (SC) based HRD ground truth using the AGO-TR1 cohort (n = 208: 108 training, 100 test) and tested its ability to predict HRD as evaluated by the Myriad classifier and the benefit from olaparib in the PAOLA-1 cohort (n = 447) in a blinded manner.

Results: In contrast to the HRD prediction AUROC of 72 % on hold-out, our model only yielded an AUROC of 57 % external. Kaplan-Meier analysis showed that progression free survival (PFS) in the PARP inhibitor treated PAOLA-1 patients was significantly improved in the HRD positive group as defined by our model, but not in the HRD negative group. PFS improvement in PARP inhibitor-treated patients was substantially longer in our HRD positive group, hinting at a biologically meaningful prediction of benefit from PARP inhibitors.

Conclusion: Together, our results indicate that it might be possible to generate a predictor of benefit from PARP inhibitors based on the DL-mediated analysis of WSIs. However, further studies with larger cohorts and further methodological improvements will be necessary to generate a predictor with clinically useful accuracy across independent patient cohorts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejca.2024.115199DOI Listing

Publication Analysis

Top Keywords

benefit parp
16
parp inhibitors
12
predicting benefit
8
deep learning
8
ovarian cancer
8
parp inhibitor
8
hrd positive
8
positive group
8
generate predictor
8
parp
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!