Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Ovarian cancer patients with a Homologous Recombination Deficiency (HRD) often benefit from polyadenosine diphosphate-ribose polymerase (PARP) inhibitor maintenance therapy after response to platinum-based chemotherapy. HR status is currently analyzed via complex molecular tests. Predicting benefit from PARP inhibitors directly on histological whole slide images (WSIs) could be a fast and cheap alternative.
Patients And Methods: We trained a Deep Learning (DL) model on H&E stained WSIs with "shrunken centroid" (SC) based HRD ground truth using the AGO-TR1 cohort (n = 208: 108 training, 100 test) and tested its ability to predict HRD as evaluated by the Myriad classifier and the benefit from olaparib in the PAOLA-1 cohort (n = 447) in a blinded manner.
Results: In contrast to the HRD prediction AUROC of 72 % on hold-out, our model only yielded an AUROC of 57 % external. Kaplan-Meier analysis showed that progression free survival (PFS) in the PARP inhibitor treated PAOLA-1 patients was significantly improved in the HRD positive group as defined by our model, but not in the HRD negative group. PFS improvement in PARP inhibitor-treated patients was substantially longer in our HRD positive group, hinting at a biologically meaningful prediction of benefit from PARP inhibitors.
Conclusion: Together, our results indicate that it might be possible to generate a predictor of benefit from PARP inhibitors based on the DL-mediated analysis of WSIs. However, further studies with larger cohorts and further methodological improvements will be necessary to generate a predictor with clinically useful accuracy across independent patient cohorts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejca.2024.115199 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!