Mutations in lipid regulator genes are a frequent cause of autism spectrum disorder, including those regulating phosphatidylinositol (PI) and phosphoinositide 3-kinase signaling. encodes a key acyltransferase in PI synthesis and is mutated in an autism-related condition with neurodevelopmental delay and epilepsy. Using liquid chromatography-tandem mass spectrometry, we analyzed the PI-associated glycerolipidome in mice and humans during neurodevelopment and found dynamic regulation at times corresponding to neural apoptosis in the brains of knockout mice. function was necessary for polyunsaturated lipid synthesis and cortical neural migration, and loss resulted in massive accumulation of the precursor lysophosphatidylinositol and hyperactive mTOR signaling. Inhibiting mTOR signaling rescued migration defects. Our findings demonstrate roles for lipid remodeling during neurodevelopment and implicate lipid regulation in neuronal migration, revealing potential paths to treatment for deficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.adp5247DOI Listing

Publication Analysis

Top Keywords

neuronal migration
8
mtor signaling
8
lipidomic profiling
4
profiling mouse
4
mouse brain
4
brain human
4
human neuron
4
neuron cultures
4
cultures reveals
4
reveals role
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!