AI Article Synopsis

  • Multiferroic materials combine ferroelectricity and magnetism, making them promising for applications like magnetic memory and spin transistors.
  • A new multiferroic chalcogenide semiconductor, CuMnSiTe, demonstrates unique properties such as a polar monoclinic crystal structure and canted antiferromagnetism below 35 K, along with significant magnetoelectric coupling.
  • Observations include high electric polarization at low temperatures and the potential for room-temperature ferroelectricity, marking it as a significant advancement in multiferroic materials research.

Article Abstract

Multiferroic materials host both ferroelectricity and magnetism, offering potential for magnetic memory and spin transistor applications. Here, we report a multiferroic chalcogenide semiconductor CuMnSiTe (0.04 ≤ ≤ 0.26; 0.03 ≤ ≤ 0.15), which crystallizes in a polar monoclinic structure ( space group). It exhibits a canted antiferromagnetic state below 35 kelvin, with magnetic hysteresis and remanent magnetization under 15 kelvin. We demonstrate multiferroicity and strong magnetoelectric coupling through magnetodielectric and magnetocurrent measurements. At 10 kelvin, the magnetically induced electric polarization reaches ~0.8 microcoulombs per square centimeter, comparable to the highest value in oxide multiferroics. We also observe possible room-temperature ferroelectricity. Given that multiferroicity is very rare among transition metal chalcogenides, our finding sets up a unique materials platform for designing multiferroic chalcogenides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11691694PMC
http://dx.doi.org/10.1126/sciadv.adp9379DOI Listing

Publication Analysis

Top Keywords

strong magnetoelectric
8
magnetoelectric coupling
8
≤ ≤
8
discovery layered
4
multiferroic
4
layered multiferroic
4
multiferroic compound
4
compound cumnsite
4
cumnsite strong
4
coupling multiferroic
4

Similar Publications

Stacking-Engineered Ferroelectricity and Multiferroic Order in van der Waals Magnets.

Phys Rev Lett

December 2024

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.

Two-dimensional (2D) materials that exhibit spontaneous magnetization, polarization, or strain (referred to as ferroics) have the potential to revolutionize nanotechnology by enhancing the multifunctionality of nanoscale devices. However, multiferroic order is difficult to achieve, requiring complicated coupling between electron and spin degrees of freedom. We propose a universal method to engineer multiferroics from van der Waals magnets by taking advantage of the fact that changing the stacking between 2D layers can break inversion symmetry, resulting in ferroelectricity as well as magnetoelectric coupling.

View Article and Find Full Text PDF

Accurate DFT simulation of complex functional materials: Synergistic enhancements achieved by SCAN meta-GGA.

J Chem Phys

January 2025

Minjiang Collaborative Center for Theoretical Physics, College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108, China.

Complex functional materials are characterized by intricate and competing bond orders, making them an excellent platform for evaluating the newly developed strongly constrained and appropriately normed (SCAN) density functional. In this study, we explore the effectiveness of SCAN in simulating the electronic properties of displacive ferroelectrics (BaTiO3 and PbTiO3) and magnetoelectric multiferroics (BiFeO3 and YMnO3), which encompass a broad spectrum of bonding characteristics. Due to a significant reduction in self-interaction error, SCAN manifests its improvements over the Perdew-Burke-Ernzerhof (PBE) method in three aspects: SCAN predicts more accurate ionicity, produces more compact orbitals, and better captures d-orbital anisotropy.

View Article and Find Full Text PDF

Discovery of a layered multiferroic compound CuMnSiTe with strong magnetoelectric coupling.

Sci Adv

January 2025

2D Crystal Consortium, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.

Article Synopsis
  • Multiferroic materials combine ferroelectricity and magnetism, making them promising for applications like magnetic memory and spin transistors.
  • A new multiferroic chalcogenide semiconductor, CuMnSiTe, demonstrates unique properties such as a polar monoclinic crystal structure and canted antiferromagnetism below 35 K, along with significant magnetoelectric coupling.
  • Observations include high electric polarization at low temperatures and the potential for room-temperature ferroelectricity, marking it as a significant advancement in multiferroic materials research.
View Article and Find Full Text PDF

Using Green's function theory and a microscopic model, the multiferroic properties of Co4Nb2O9 are investigated theoretically. There are some discrepancies in the discussion of the electric and dielectric behavior of CNO with and without external magnetic fields. We try to clarify them.

View Article and Find Full Text PDF
Article Synopsis
  • Anion doping engineering boosts the electronic configuration and transport properties of carbon-based magnetoelectric materials, enhancing dielectric coupling in a CuCo bimetallic/carbon system through various doping and defect modulation techniques.
  • The introduction of large atomic radii elements like Se creates lattice distortions that strengthen dipole polarization, particularly at high frequencies, while vacancies in the structure serve as electron traps to improve charge redistribution and electronic interactions.
  • The ultra-thin material exhibits exceptional microwave attenuation (‒56.1 dB) and offers infrared stealth capabilities, all while maintaining structural stability and other beneficial properties typically associated with carbon-based hybrids.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!