AI Article Synopsis

  • The NLRP3 inflammasome is important in liver diseases, but its specific function in liver regeneration is not well understood.
  • In a study with mice undergoing partial hepatectomy, it was found that inhibiting or removing NLRP3 improved liver regeneration, while increasing its levels hindered recovery.
  • The benefits of NLRP3 depletion are linked to the activation of certain macrophages, and using drugs to inhibit NLRP3 showed promise in improving liver regeneration, especially in mice on a high-fat diet.

Article Abstract

The NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in human acute and chronic liver diseases. However, the role and cell-specific contribution of NLRP3 in liver regeneration remains unclear. Here, we found that NLRP3 was highly activated during the early stage of liver regeneration via 70% partial hepatectomy (PHx) mice model and clinical data. Global NLRP3 depletion or pharmacologically blocking NLRP3 significantly enhanced liver regeneration, while NLRP3 overexpression impaired it after PHx. Furthermore, mice with myeloid-specific knockout of (), rather than hepatocyte-specific knockout (), showed improved liver regeneration compared to control (). Mechanistically, deficiency of promoted myeloid-epithelial-reproductive tyrosine kinase (MerTK)-mediated efferocytosis, thereby inducing macrophages toward a pro-reparative Ly6C phenotype. Notably, NLRP3 inhibition by MCC950 effectively reversed the impairment of liver regeneration after PHx in mice fed a high-fat diet. Our findings provide a potential therapeutic strategy for the prevention and treatment of post-hepatectomy liver failure.

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.adq5786DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11691640PMC

Publication Analysis

Top Keywords

liver regeneration
24
phx mice
12
nlrp3
8
nlrp3 inflammasome
8
liver
8
regeneration
6
inflammasome constrains
4
constrains liver
4
regeneration impairing
4
impairing mertk-mediated
4

Similar Publications

Exosomes, cell-derived vesicles produced by cells, are fascinating and drawing growing interest in the field of biomedical exploration due to their exceptional properties. There is fascinating evidence that exosomes are involved in major biological processes, including diseases and regeneration. Exosomes from mesenchymal stem cells (MSCs) have shown promising outcomes in regenerative medicine.

View Article and Find Full Text PDF

Donor MHC-specific thymus vaccination allows for immunocompatible allotransplantation.

Cell Res

January 2025

Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.

Organ transplantation is the last-resort option to treat organ failure. However, less than 10% of patients benefit from this only option due to lack of major histocompatibility complex (MHC)-matched donor organs and 25%-80% of donated organs could not find MHC-matched recipients. T cell allorecognition is the principal mechanism for allogeneic graft rejection.

View Article and Find Full Text PDF

Diacylglycerol kinases (DGKs) phosphorylate diacylglycerol to generate phosphatidic acid, which plays important roles in intracellular signal transduction. DGKα is reportedly associated with progression of tumors, including hepatocellular carcinomas, but its relationship with liver regeneration has not been examined. The purpose of this research is to elucidate the role of DGKα in liver regeneration.

View Article and Find Full Text PDF

Feline Idiopathic Cystitis (FIC), is a chronic lower urinary tract condition in cats analogous to PBS/IC in women, which presents significant treatment challenges due to its idiopathic nature. Recent advancements in regenerative medicine highlight the potential of Adipose Tissue-Derived Stem Cells (ADSCs), particularly through their secretome, which includes mediators, bioactive molecules, and extracellular vesicles (EVs). Notably, exosomes, a subset of EVs, facilitate cell-to-cell communication and, when derived from ADSCs, exhibit anti-inflammatory properties and contribute to tissue regeneration.

View Article and Find Full Text PDF
Article Synopsis
  • The NLRP3 inflammasome is important in liver diseases, but its specific function in liver regeneration is not well understood.
  • In a study with mice undergoing partial hepatectomy, it was found that inhibiting or removing NLRP3 improved liver regeneration, while increasing its levels hindered recovery.
  • The benefits of NLRP3 depletion are linked to the activation of certain macrophages, and using drugs to inhibit NLRP3 showed promise in improving liver regeneration, especially in mice on a high-fat diet.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!