Idiopathic pulmonary fibrosis (IPF) is characterized by persistent tissue injury, dysregulated wound healing, and extracellular matrix (ECM) deposition by myofibroblasts (MFs) through the fibroblast-to-myofibroblast transition (FMT). Implicit in the FMT process are changes in the ECM and cellular topology, but their relationship with the lung fibroblast phenotype has not been explored. We engineered topological mimetics of alignment cues (anisotropy/isotropy) using lung decellularized ECM micropattern arrays and investigated the effects of cellular topology on cellular fates in MRC-5 lung fibroblasts. We found that isotropic MRC-5 cells presented changes of the cytoskeleton, increased cell-cell adhesions and a multicellular architecture with increased overlap, changes in actin-myosin development, and enhanced focal adhesion and cell junction with random alignment. Besides, anisotropic fibroblasts were activated into a regular phenotype with an ECM remodeling profile. In contrast, isotropic fibroblasts developed a highly invasive phenotype expressing molecules, including CD274/programmed death-ligand 1 (PD-L1), cellular communication network factor 2 (CCN2)/connective tissue growth factor (CTGF), hyaluronan synthase 2 (HAS2), and semaphorin 7A (SEMA7A), but with downregulated matrix genes. Moreover, isotropic fibroblasts also showed higher expressions of Ki-67 and cyclin D1 (CCND1), resistance to apoptosis/senescence, and decreased autophagy. The topology regulated the cellular heterogeneity and resulted in positive feedback between changes in the cellular phenotype and the ECM structure, which may aggravate fibrosis and lead to a priming of malignant microenvironment during carcinogenesis. Using the versatile platform of micropattern array, we can not only visualize the interaction mechanism between cells and the ECM but also select potential clinical targets for diagnosis and therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c11113 | DOI Listing |
ACS Nano
January 2025
Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
Biomaterials
December 2024
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China. Electronic address:
Epithelial-mesenchymal transition (EMT) is a key phenotypic switch in cancer metastasis, leading to fatal consequences for patients. Under geometric constraints, the morphology of cancer cells changes in both cellular and subcellular levels, whose effects on EMT are, however, not fully understood. Herein, we designed and fabricated chimeric micropatterns of polystyrene (PS) with adhesion contrast to reveal the impacts of cell shapes and nuclear shapes on EMT in a decoupled way.
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China.
Microbubble-facilitated sonoporation is a rapid, versatile, and non-viral intracellular delivery technique with potential for clinical and ex vivo cell engineering applications. We developed a micropatterning-based approach to investigate the impact of cell shape on sonoporation efficacy. Cationic microbubbles were employed to enhance sonoporation by binding to the cell membrane electrostatically.
View Article and Find Full Text PDFMicrosyst Nanoeng
December 2024
Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
Microextrusion printing is widely used to precisely manufacture microdevices, microphysiological systems, and biological constructs that feature micropatterns and microstructures consisting of various materials. This method is particularly useful for creating biological models that recapitulate in vivo-like cellular microenvironments. Although there is a recent demand for high-throughput data from a single in vitro system, it remains challenging to fabricate multiple models with a small volume of bioinks in a stable and precise manner due to the spreading and evaporation issues of the extruded hydrogel.
View Article and Find Full Text PDFNanotechnology
December 2024
Varex Imaging Corporation, Salt Lake City, UT 84104, United States of America.
Carbon nanotubes (CNTs) possess many unique properties that make them ideal for field emission. However, screening due to high density and poor substrate adhesion limits their application. We tested the field emission of various patterned vertically aligned carbon nanotube (VACNT) arrays adhered to copper substrates using carbon paste.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!