High Efficiency and Narrow Emissions in Deep-Blue Pt(II) Emitters in Organic Light-Emitting Diodes via Anchor-Shaped Substituent Design.

ACS Appl Mater Interfaces

School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.

Published: January 2025

In this study, a tetradentate Pt(II) complex designed to have -heterocyclic carbene ligands modified with an anchor-shaped 2,6-diisopropylphenyl (dip) group is described to enhance molecular rigidity for narrow emission and high efficiency. The tetradentate ligand with the dip group significantly hinders steric interactions and restricts π-conjugation from benzocarbene, leading to shallow lowest unoccupied molecular orbital levels and a consequent reduction in the triplet metal-to-ligand charge transfer character. These structural modifications result in narrow emission spectra and enhanced efficiency for blue organic light-emitting diodes (OLEDs) over wide doping concentration ranges. These blue OLEDs exhibit deep-blue emissions at 455 nm with color coordinates of (0.139, 0.090), a full width at half-maximum of 17 nm, and a high maximum external quantum efficiency of 24.1% at a doping concentration of 10 wt %. In addition, the OLED performance was stably maintained at a doping concentration of 20 wt %. Overall, the anchor-shaped dip group significantly enhances the rigidity of the ligand in the tetradentate Pt(II) complex, effectively reducing intermolecular interactions and allowing the complex to function as a highly efficient and pure deep-blue emitter.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c18872DOI Listing

Publication Analysis

Top Keywords

dip group
12
doping concentration
12
high efficiency
8
organic light-emitting
8
light-emitting diodes
8
tetradentate ptii
8
ptii complex
8
narrow emission
8
efficiency narrow
4
narrow emissions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!