Runners often reduce their pace during inclined running to maintain a constant metabolic workload, known as iso-efficiency speed (a speed-incline combination with the same metabolic intensity as level running). This study investigates changes in lower extremity (LE) joint work profiles when running on an incline at iso-efficiency speed. Eleven collegiate distance runners completed a treadmill running task under three conditions (0%, 4%, and 8% incline). Running velocity was reduced with increasing incline to ensure a consistent metabolic workload across conditions. An 8-camera motion capture system and an instrumented treadmill collected kinematics and ground reaction forces. Visual 3D was used to calculate ankle, knee, and hip joint powers, while custom software (MATLAB) calculated ankle, knee, and hip joint positive and negative work values. A significant increase in LE total positive work was attributed to greater ankle and hip joint positive work with steeper inclines. Reduced LE total negative work resulted from lower knee and hip joint negative work as incline increased. Results suggest that at iso-efficiency speeds, inclined treadmill running increases eccentric demands on the ankle joint and concentric demands on the ankle and hip joints, benefiting training programmes to optimize cardiorespiratory stimuli while reducing mechanical demand on specific extremity structures.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02640414.2024.2440675DOI Listing

Publication Analysis

Top Keywords

hip joint
16
knee hip
12
negative work
12
joint work
8
metabolic workload
8
iso-efficiency speed
8
treadmill running
8
ankle knee
8
joint positive
8
positive work
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!