The progression of hepatoma is heavily influenced by the microenvironment. Tumor-associated macrophages (TAMs) are considered to play a critical role in the tumor microenvironment (TME) and increase the aggressiveness of hepatoma. The activation of hepatic stellate cells (HSCs) is involved in hepatoma progression, and accumulating evidence demonstrates a change in microRNA (miRNA) expression during HSC activation. Therefore, the potential roles of HSCs-related miRNAs in macrophage differentiation and hepatoma progression deserve to be explored. The present study aimed to investigate the effects of miRNAs carried by small extracellular vesicles (sEVs) released by activated HSCs on hepatoma progression. The results indicated that miR-27a-3p was significantly upregulated in cells and corresponding sEVs during the activation of primary rat HSCs and human HSC line-LX2 cells. Furthermore, miR-27a-3p contributed to the proliferation and migration of hepatoma cells and promoted M2 polarization of macrophage. HSC-sEVs overexpressing miR-27a-3p can directly facilitate tumor progression and modulate macrophage polarization, indirectly contributing to hepatoma progression. Finally, Sprouty2 (SPRY2) was verified to be the target gene of miR-27a-3p. In conclusion, activated HSC-derived sEVs with high levels of miR-27a-3p might induce M2 macrophage polarization and promote hepatoma progression, providing new insights into the mechanism of hepatoma progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685157PMC
http://dx.doi.org/10.3389/fimmu.2024.1489679DOI Listing

Publication Analysis

Top Keywords

hepatoma progression
28
macrophage polarization
12
hepatoma
10
progression
9
hepatic stellate
8
small extracellular
8
extracellular vesicles
8
mir-27a-3p
6
macrophage
5
activated hepatic
4

Similar Publications

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

Introduction: 58 million people worldwide are chronically infected with hepatitis C virus (HCV) and are at risk of developing cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antivirals are highly effective; however, they are burdened by high costs and the unchanged risk of HCC and reinfection, making prophylactic countermeasures an urgent medical need. HCV high genetic diversity is one of the main obstacles to vaccine development.

View Article and Find Full Text PDF

Background: Methyltransferase-like (METTL) family protein plays a crucial role in the progression of malignancies. However, the function of METTL17 across pan-cancers, especially in hepatocellular carcinoma (HCC) is still poorly understood.

Methods: All original data were downloaded from TCGA, GTEx, HPA, UCSC databases and various data portals.

View Article and Find Full Text PDF

Background: As a member of the tumor necrosis factor (TNF) superfamily, tumor necrosis factor superfamily member 4 (TNFSF4) is expressed on antigen-presenting cells and activated T cells by binding to its receptor TNFRSF4. However, tumorigenicity of TNFSF4 has not been studied in pan-cancer. Therefore, comprehensive bioinformatics analysis of pan-cancer was performed to determine the mechanisms through which TNFSF4 regulates tumorigenesis.

View Article and Find Full Text PDF

Background: Numerous studies have demonstrated limited survival benefits of transarterial chemoembolization (TACE) alone in the treatment of intermediate-stage hepatocellular carcinoma (HCC) beyond up-to-seven criteria. The advent of immunotherapy, particularly immune checkpoint inhibitors (ICIs), has opened new avenues for HCC treatment. However, TACE combined with ICIs has not been investigated for patients with intermediate-stage HCC beyond the up-to-seven criteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!