Introduction: Coronary atherosclerosis serves as the primary pathological etiology underlying coronary artery disease (CAD). Thyroid hormones show potential as risk factors, aside from the main standard modifiable cardiovascular risk factors (SMuRFs). This research seeks to elucidate the link between thyroid activity and coronary atherosclerosis.
Methods: Single nucleotide polymorphisms (SNPs) linked to hypothyroidism (N = 213,990), Graves' disease (GD) (N = 190,034), other hyperthyroidism types (N = 190,799), thyroid-stimulating hormone (TSH) (N = 271,040), free thyroxine (FT4) (N = 119,120), and coronary atherosclerosis (N = 360,950) were retrieved from the IEU OpenGWAS, Finngen R9, and ThyroidOmics Consortium databases. Following the application of strict criteria to eliminate linkage disequilibrium, palindromic sequences, and heterozygous alleles, a bidirectional Mendelian Randomization (MR) analysis was conducted between the thyroid gland and coronary atherosclerosis using inverse variance weighting (IVW), weighted median (WM), and MR-Egger techniques. For sensitivity analysis, Cochran's Q test, leave-one-out method, and MR-Egger regression analysis were employed.
Results: The forward MR analysis indicates that genetic predispositions such as hypothyroidism (OR = 1.07; 95% CI 1.01-1.12; IVW- = 0.021), Graves' disease (OR = 1.04; 95% CI 1.01-1.07; IVW- = 0.002), and other forms of hyperthyroidism (OR = 1.05; 95% CI 1.01-1.10; IVW- = 0.021) elevate the likelihood of developing coronary atherosclerosis. Additionally, no discernible evidence of a causality between FT4 or TSH, and coronary atherosclerosis (IVW- > 0.05) was found. Coronary atherosclerosis is not related to increased risk of five thyroid function phenotypes in reverse MR analysis. The sensitivity analysis provided relatively reliable evidence to reinforce the validity of our findings.
Conclusions: Our findings are an investigation of the causality between thyroid function and coronary atherosclerosis. This study pinpointed potential heart disease risks linked to coronary atherosclerosis and offered additional understanding for defining SMuRFs in CAD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683704 | PMC |
http://dx.doi.org/10.31083/j.rcm2512453 | DOI Listing |
Cardiovasc Revasc Med
December 2024
Department of Cardiology, Tel Aviv Sourasky Medical Center, affiliated with the School of Medicine, Tel Aviv University, Israel.
Background: Angina with non-obstructive coronary artery disease (ANOCA) is commonly observed in patients with stable angina undergoing coronary angiography. Current guidelines recommend non-invasive stress testing as the first step in diagnosing coronary microvascular disease (CMD). This study aims to evaluate the diagnostic value of non-invasive stress testing in patients invasively diagnosed with CMD.
View Article and Find Full Text PDFJ Mol Cell Cardiol
December 2024
A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Heart Centre and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland. Electronic address:
Background: Coronary stenting operations have become the main option for the treatment of coronary heart disease. Vessel recovery after stenting has emerged as a critical factor in reducing possible complications. In this study, we evaluated the feasibility, safety and efficacy of locally administered intraluminal gene therapy delivered using a specialized infusion balloon catheter.
View Article and Find Full Text PDFClin Radiol
November 2024
Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China. Electronic address:
Aim: To investigate the relationship between epicardial adipose tissue (EAT) and myocardial strain and the severity of coronary artery disease (CAD), and to evaluate the predictive value of EAT parameters in early left ventricular (LV) diastolic dysfunction.
Materials And Methods: One hundred seventy patients with suspected CAD who underwent both coronary computed tomography angiography and echocardiography were enrolled in 2020. LV global strains were calculated using commercial software.
Compr Psychiatry
December 2024
Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas-Palanga, Lithuania.
Background: Cardiovascular diseases such as coronary artery disease (CAD) have a high prevalence of psychiatric comorbidities, that may impact clinically relevant outcomes (e.g., cognitive impairment and executive dysfunction).
View Article and Find Full Text PDFJ Psychosom Res
December 2024
Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 Xin Jian South Road Street, Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China. Electronic address:
Objective: Our primary objective is to investigate the causal relationships between 12 psychiatric disorders (PDs) and atrial fibrillation (AF), coronary artery disease (CAD), myocardial infarction (MI), and heart failure (HF).
Methods: Firstly, we used linkage disequilibrium score regression to calculate the genetic correlations between 12 PDs and 4 cardiovascular diseases (CVDs). Subsequently, we performed two-sample and bidirectional Mendelian randomization (MR) analyses of phenotypes with significant genetic correlations to explore the causal relationships between PDs and CVDs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!